Cargando…
Extended states for the Schrödinger operator with quasi-periodic potential in dimension two
The authors consider a Schrödinger operator H=-\Delta +V(\vec x) in dimension two with a quasi-periodic potential V(\vec x). They prove that the absolutely continuous spectrum of H contains a semiaxis and there is a family of generalized eigenfunctions at every point of this semiaxis with the follow...
Autores principales: | Karpeshina, Yulia, Shterenberg, Roman |
---|---|
Lenguaje: | eng |
Publicado: |
American Mathematical Society
2019
|
Materias: | |
Acceso en línea: | http://cds.cern.ch/record/2685669 |
Ejemplares similares
-
Perturbation theory for the Schrödinger operator with a periodic potential
por: Karpeshina, Yulia E
Publicado: (1997) -
Scattering Theory Approach to Random Schrödinger Operators in One Dimension
por: Kostrykin, V, et al.
Publicado: (1997) -
Localization in Periodic Potentials: From Schrödinger Operators to the Gross-Pitaevskii Equation
por: Pelinovsky, Dmitry E
Publicado: (2011) -
Quasi-periodic solutions of hamiltonian perturbations of 2D linear Schrödinger equations
por: Bourgain, J
Publicado: (1995) -
Lectures on Schrödinger Operators
por: Balslev, Erik
Publicado: (1986)