Cargando…

Automorphisms of two-generator free groups and spaces of isometric actions on the hyperbolic plane

The automorphisms of a two-generator free group \mathsf F_2 acting on the space of orientation-preserving isometric actions of \mathsf F_2 on hyperbolic 3-space defines a dynamical system. Those actions which preserve a hyperbolic plane but not an orientation on that plane is an invariant subsystem,...

Descripción completa

Detalles Bibliográficos
Autores principales: Goldman, William, McShane, Greg, Stantchev, George
Lenguaje:eng
Publicado: American Mathematical Society 2019
Materias:
Acceso en línea:http://cds.cern.ch/record/2685942
_version_ 1780963499208343552
author Goldman, William
McShane, Greg
Stantchev, George
author_facet Goldman, William
McShane, Greg
Stantchev, George
author_sort Goldman, William
collection CERN
description The automorphisms of a two-generator free group \mathsf F_2 acting on the space of orientation-preserving isometric actions of \mathsf F_2 on hyperbolic 3-space defines a dynamical system. Those actions which preserve a hyperbolic plane but not an orientation on that plane is an invariant subsystem, which reduces to an action of a group \Gamma on \mathbb R ^3 by polynomial automorphisms preserving the cubic polynomial \kappa _\Phi (x,y,z) := -x^{2} -y^{2} + z^{2} + x y z -2 and an area form on the level surfaces \kappa _{\Phi}^{-1}(k).
id cern-2685942
institution Organización Europea para la Investigación Nuclear
language eng
publishDate 2019
publisher American Mathematical Society
record_format invenio
spelling cern-26859422021-04-21T18:20:02Zhttp://cds.cern.ch/record/2685942engGoldman, WilliamMcShane, GregStantchev, GeorgeAutomorphisms of two-generator free groups and spaces of isometric actions on the hyperbolic planeMathematical Physics and MathematicsThe automorphisms of a two-generator free group \mathsf F_2 acting on the space of orientation-preserving isometric actions of \mathsf F_2 on hyperbolic 3-space defines a dynamical system. Those actions which preserve a hyperbolic plane but not an orientation on that plane is an invariant subsystem, which reduces to an action of a group \Gamma on \mathbb R ^3 by polynomial automorphisms preserving the cubic polynomial \kappa _\Phi (x,y,z) := -x^{2} -y^{2} + z^{2} + x y z -2 and an area form on the level surfaces \kappa _{\Phi}^{-1}(k).American Mathematical Societyoai:cds.cern.ch:26859422019
spellingShingle Mathematical Physics and Mathematics
Goldman, William
McShane, Greg
Stantchev, George
Automorphisms of two-generator free groups and spaces of isometric actions on the hyperbolic plane
title Automorphisms of two-generator free groups and spaces of isometric actions on the hyperbolic plane
title_full Automorphisms of two-generator free groups and spaces of isometric actions on the hyperbolic plane
title_fullStr Automorphisms of two-generator free groups and spaces of isometric actions on the hyperbolic plane
title_full_unstemmed Automorphisms of two-generator free groups and spaces of isometric actions on the hyperbolic plane
title_short Automorphisms of two-generator free groups and spaces of isometric actions on the hyperbolic plane
title_sort automorphisms of two-generator free groups and spaces of isometric actions on the hyperbolic plane
topic Mathematical Physics and Mathematics
url http://cds.cern.ch/record/2685942
work_keys_str_mv AT goldmanwilliam automorphismsoftwogeneratorfreegroupsandspacesofisometricactionsonthehyperbolicplane
AT mcshanegreg automorphismsoftwogeneratorfreegroupsandspacesofisometricactionsonthehyperbolicplane
AT stantchevgeorge automorphismsoftwogeneratorfreegroupsandspacesofisometricactionsonthehyperbolicplane