Cargando…

On space-time quasiconcave solutions of the heat equation

In this paper the authors first obtain a constant rank theorem for the second fundamental form of the space-time level sets of a space-time quasiconcave solution of the heat equation. Utilizing this constant rank theorem, they obtain some strictly convexity results of the spatial and space-time leve...

Descripción completa

Detalles Bibliográficos
Autores principales: Chen, Chuanqiang, Ma, Xinan, Salani, Paolo
Lenguaje:eng
Publicado: American Mathematical Society 2019
Materias:
Acceso en línea:http://cds.cern.ch/record/2685946
Descripción
Sumario:In this paper the authors first obtain a constant rank theorem for the second fundamental form of the space-time level sets of a space-time quasiconcave solution of the heat equation. Utilizing this constant rank theorem, they obtain some strictly convexity results of the spatial and space-time level sets of the space-time quasiconcave solution of the heat equation in a convex ring. To explain their ideas and for completeness, the authors also review the constant rank theorem technique for the space-time Hessian of space-time convex solution of heat equation and for the second fundamental form of the convex level sets for harmonic function.