Cargando…
Real analysis: a constructive approach through interval arithmetic
Real Analysis: A Constructive Approach Through Interval Arithmetic presents a careful treatment of calculus and its theoretical underpinnings from the constructivist point of view. This leads to an important and unique feature of this book: All existence proofs are direct, so showing that the number...
Autor principal: | |
---|---|
Lenguaje: | eng |
Publicado: |
American Mathematical Society
2019
|
Materias: | |
Acceso en línea: | http://cds.cern.ch/record/2686155 |
_version_ | 1780963529814179840 |
---|---|
author | Bridger, Mark |
author_facet | Bridger, Mark |
author_sort | Bridger, Mark |
collection | CERN |
description | Real Analysis: A Constructive Approach Through Interval Arithmetic presents a careful treatment of calculus and its theoretical underpinnings from the constructivist point of view. This leads to an important and unique feature of this book: All existence proofs are direct, so showing that the numbers or functions in question exist means exactly that they can be explicitly calculated. For example, at the very beginning, the real numbers are shown to exist because they are constructed from the rationals using interval arithmetic. This approach, with its clear analogy to scientific measurement with tolerances, is taken throughout the book and makes the subject especially relevant and appealing to students with an interest in computing, applied mathematics, the sciences, and engineering. The first part of the book contains all the usual material in a standard one-semester course in analysis of functions of a single real variable: continuity (uniform, not pointwise), derivatives, integrals, and convergence. The second part contains enough more technical material--including an introduction to complex variables and Fourier series--to fill out a full-year course. Throughout the book the emphasis on rigorous and direct proofs is supported by an abundance of examples, exercises, and projects--many with hints--at the end of every section. The exposition is informal but exceptionally clear and well motivated throughout. |
id | cern-2686155 |
institution | Organización Europea para la Investigación Nuclear |
language | eng |
publishDate | 2019 |
publisher | American Mathematical Society |
record_format | invenio |
spelling | cern-26861552021-04-21T18:19:42Zhttp://cds.cern.ch/record/2686155engBridger, MarkReal analysis: a constructive approach through interval arithmeticMathematical Physics and MathematicsReal Analysis: A Constructive Approach Through Interval Arithmetic presents a careful treatment of calculus and its theoretical underpinnings from the constructivist point of view. This leads to an important and unique feature of this book: All existence proofs are direct, so showing that the numbers or functions in question exist means exactly that they can be explicitly calculated. For example, at the very beginning, the real numbers are shown to exist because they are constructed from the rationals using interval arithmetic. This approach, with its clear analogy to scientific measurement with tolerances, is taken throughout the book and makes the subject especially relevant and appealing to students with an interest in computing, applied mathematics, the sciences, and engineering. The first part of the book contains all the usual material in a standard one-semester course in analysis of functions of a single real variable: continuity (uniform, not pointwise), derivatives, integrals, and convergence. The second part contains enough more technical material--including an introduction to complex variables and Fourier series--to fill out a full-year course. Throughout the book the emphasis on rigorous and direct proofs is supported by an abundance of examples, exercises, and projects--many with hints--at the end of every section. The exposition is informal but exceptionally clear and well motivated throughout.American Mathematical Societyoai:cds.cern.ch:26861552019 |
spellingShingle | Mathematical Physics and Mathematics Bridger, Mark Real analysis: a constructive approach through interval arithmetic |
title | Real analysis: a constructive approach through interval arithmetic |
title_full | Real analysis: a constructive approach through interval arithmetic |
title_fullStr | Real analysis: a constructive approach through interval arithmetic |
title_full_unstemmed | Real analysis: a constructive approach through interval arithmetic |
title_short | Real analysis: a constructive approach through interval arithmetic |
title_sort | real analysis: a constructive approach through interval arithmetic |
topic | Mathematical Physics and Mathematics |
url | http://cds.cern.ch/record/2686155 |
work_keys_str_mv | AT bridgermark realanalysisaconstructiveapproachthroughintervalarithmetic |