Cargando…
JEDI-net: a jet identification algorithm based on interaction networks
We investigate the performance of a jet identification algorithm based on interaction networks (JEDI-net) to identify all-hadronic decays of high-momentum heavy particles produced at the LHC and distinguish them from ordinary jets originating from the hadronization of quarks and gluons. The jet dyna...
Autores principales: | Moreno, Eric A., Cerri, Olmo, Duarte, Javier M., Newman, Harvey B., Nguyen, Thong Q., Periwal, Avikar, Pierini, Maurizio, Serikova, Aidana, Spiropulu, Maria, Vlimant, Jean-Roch |
---|---|
Lenguaje: | eng |
Publicado: |
2019
|
Materias: | |
Acceso en línea: | https://dx.doi.org/10.1140/epjc/s10052-020-7608-4 http://cds.cern.ch/record/2688535 |
Ejemplares similares
-
Interaction networks for the identification of boosted $H\to b\overline{b}$ decays
por: Moreno, Eric A., et al.
Publicado: (2019) -
Variational Autoencoders for New Physics Mining at the Large Hadron Collider
por: Cerri, Olmo, et al.
Publicado: (2018) -
Pileup mitigation at the Large Hadron Collider with Graph Neural Networks
por: Arjona Martínez, J., et al.
Publicado: (2018) -
Particle Generative Adversarial Networks for full-event simulation at the LHC and their application to pileup description
por: Arjona Martínez, Jesús, et al.
Publicado: (2019) -
Squark-mediated Higgs+jets production at the LHC
por: Duarte, J., et al.
Publicado: (2017)