Cargando…
Machine Learning Methods for Histogram Deconvolution in High Energy Physics
Keras sequential neural networks are developed to perform histogram deconvolution on Z-boson mass spectra generated by the MadGraph5_aMC@NLO event generator using Pythia8 and Delphes. Three ways of interpreting the problem with neural networks are presented, tested and then compared with each other...
Autor principal: | Wiederhold, Aidan Richard |
---|---|
Lenguaje: | eng |
Publicado: |
2019
|
Materias: | |
Acceso en línea: | http://cds.cern.ch/record/2690260 |
Ejemplares similares
-
Machine assisted histogram classification
por: Benyo, B, et al.
Publicado: (2010) -
A Statistician’s View on Deconvolution and Unfolding
por: Panaretos, Victor M
Publicado: (2011) -
Modern machine learning in the presence of systematic uncertainties for robust and optimized multivariate data analysis in high-energy particle physics
por: Wunsch, Stefan
Publicado: (2021) -
The DELPHI histogram presenter
por: Camporesi, T, et al.
Publicado: (1992) -
Note on Histogram Fitting
por: Cowan, G
Publicado: (1993)