Cargando…
Incompleteness for higher-order arithmetic: an example based on Harrington’s principle
The book examines the following foundation question: are all theorems in classic mathematics which are expressible in second order arithmetic provable in second order arithmetic? In this book, the author gives a counterexample for this question and isolates this counterexample from Martin-Harrington...
Autor principal: | Cheng, Yong |
---|---|
Lenguaje: | eng |
Publicado: |
Springer
2019
|
Materias: | |
Acceso en línea: | https://dx.doi.org/10.1007/978-981-13-9949-7 http://cds.cern.ch/record/2691306 |
Ejemplares similares
-
Subsystems of second order arithmetic
por: Simpson, Stephen G
Publicado: (2009) -
Metamathematics of first-order arithmetic
por: Hajek, Petr, et al.
Publicado: (2017) -
Arithmetic of higher-dimensional algebraic varieties
por: Poonen, Björn, et al.
Publicado: (2004) -
Higher arithmetic: an algorithmic introduction to number theory
por: Edwards, Harold M
Publicado: (2008) -
Quadratic number theory: an invitation to algebraic methods in the higher arithmetic
por: Lehman, J L
Publicado: (2019)