Cargando…
Neural networks and statistical learning
This book provides a broad yet detailed introduction to neural networks and machine learning in a statistical framework. A single, comprehensive resource for study and further research, it explores the major popular neural network models and statistical learning approaches with examples and exercise...
Autores principales: | , |
---|---|
Lenguaje: | eng |
Publicado: |
Springer
2019
|
Materias: | |
Acceso en línea: | https://dx.doi.org/10.1007/978-1-4471-7452-3 http://cds.cern.ch/record/2691329 |
_version_ | 1780963818704207872 |
---|---|
author | Du, Ke-Lin Swamy, M N S |
author_facet | Du, Ke-Lin Swamy, M N S |
author_sort | Du, Ke-Lin |
collection | CERN |
description | This book provides a broad yet detailed introduction to neural networks and machine learning in a statistical framework. A single, comprehensive resource for study and further research, it explores the major popular neural network models and statistical learning approaches with examples and exercises and allows readers to gain a practical working understanding of the content. This updated new edition presents recently published results and includes six new chapters that correspond to the recent advances in computational learning theory, sparse coding, deep learning, big data and cloud computing. Each chapter features state-of-the-art descriptions and significant research findings. The topics covered include: • multilayer perceptron; • the Hopfield network; • associative memory models; • clustering models and algorithms; • t he radial basis function network; • recurrent neural networks; • nonnegative matrix factorization; • independent component analysis; •probabilistic and Bayesian networks; and • fuzzy sets and logic. Focusing on the prominent accomplishments and their practical aspects, this book provides academic and technical staff, as well as graduate students and researchers with a solid foundation and comprehensive reference on the fields of neural networks, pattern recognition, signal processing, and machine learning. |
id | cern-2691329 |
institution | Organización Europea para la Investigación Nuclear |
language | eng |
publishDate | 2019 |
publisher | Springer |
record_format | invenio |
spelling | cern-26913292021-04-21T18:19:30Zdoi:10.1007/978-1-4471-7452-3http://cds.cern.ch/record/2691329engDu, Ke-LinSwamy, M N SNeural networks and statistical learningMathematical Physics and MathematicsThis book provides a broad yet detailed introduction to neural networks and machine learning in a statistical framework. A single, comprehensive resource for study and further research, it explores the major popular neural network models and statistical learning approaches with examples and exercises and allows readers to gain a practical working understanding of the content. This updated new edition presents recently published results and includes six new chapters that correspond to the recent advances in computational learning theory, sparse coding, deep learning, big data and cloud computing. Each chapter features state-of-the-art descriptions and significant research findings. The topics covered include: • multilayer perceptron; • the Hopfield network; • associative memory models; • clustering models and algorithms; • t he radial basis function network; • recurrent neural networks; • nonnegative matrix factorization; • independent component analysis; •probabilistic and Bayesian networks; and • fuzzy sets and logic. Focusing on the prominent accomplishments and their practical aspects, this book provides academic and technical staff, as well as graduate students and researchers with a solid foundation and comprehensive reference on the fields of neural networks, pattern recognition, signal processing, and machine learning.Springeroai:cds.cern.ch:26913292019 |
spellingShingle | Mathematical Physics and Mathematics Du, Ke-Lin Swamy, M N S Neural networks and statistical learning |
title | Neural networks and statistical learning |
title_full | Neural networks and statistical learning |
title_fullStr | Neural networks and statistical learning |
title_full_unstemmed | Neural networks and statistical learning |
title_short | Neural networks and statistical learning |
title_sort | neural networks and statistical learning |
topic | Mathematical Physics and Mathematics |
url | https://dx.doi.org/10.1007/978-1-4471-7452-3 http://cds.cern.ch/record/2691329 |
work_keys_str_mv | AT dukelin neuralnetworksandstatisticallearning AT swamymns neuralnetworksandstatisticallearning |