Cargando…
Distributed Training of Generative Adversarial Networks for Fast Simulation
<!--HTML-->Deep Learning techniques are being studied for different applications by the HEP community: in this talk, we discuss the case of detector simulation. The need for simulated events, expected in the future for LHC experiments and their High Luminosity upgrades, is increasing dramatica...
Autores principales: | Vallecorsa, Sofia, Khattak, Gul Rukh |
---|---|
Lenguaje: | eng |
Publicado: |
2019
|
Materias: | |
Acceso en línea: | http://cds.cern.ch/record/2692155 |
Ejemplares similares
-
Particle Detector Simulation using Generative Adversarial Networks with Domain Related Constraints
por: Khattak, Gul Rukh
Publicado: (2019) -
Fast Simulation of a High Granularity Calorimeter by Generative Adversarial Networks
por: Khattak, Gul Rukh, et al.
Publicado: (2021) -
Data-Parallel Training of Generative Adversarial Networks on HPC Systems for HEP Simulations
por: Vallecorsa, Sofia, et al.
Publicado: (2018) -
High Energy Physics Calorimeter Detector Simulation Using Generative Adversarial Networks With Domain Related Constraints
por: Khattak, Gul Rukh, et al.
Publicado: (2021) -
High Granularity Calorimeter Simulation using Generative Adversarial Networks
por: Khattak, Gul Rukh
Publicado: (2019)