Cargando…
I/O for Deep Learning at Scale
<!--HTML-->Deep Learning is revolutionizing the fields of computer vision, speech recognition and control systems. In recent years, a number of scientific domains (climate, high-energy physics, nuclear physics, astronomy, cosmology, etc) have explored applications of Deep Learning to tackle a...
Autor principal: | Koziol, Quincey |
---|---|
Lenguaje: | eng |
Publicado: |
2019
|
Materias: | |
Acceso en línea: | http://cds.cern.ch/record/2692204 |
Ejemplares similares
-
Deep Learning for satellite imagery
por: Boget, Yoann
Publicado: (2019) -
Deep Learning workflows: examples from High Energy Physics
por: Vallecorsa, Sofia, et al.
Publicado: (2019) -
Acceleration of Scientific Deep Learning Models on Heterogeneous Computing Platform with Intel FPGA
por: Vallecorsa, Sofia
Publicado: (2019) -
Performance and Scalability Analysis of CNN-based Deep Learning Inference in the Intel Distribution of OpenVINO Toolkit
por: Meyerov, Iosif
Publicado: (2019) -
Exploiting Emerging Multi-core Processors for HPC and Deep Learning using MVAPICH2 MPI Library
por: Panda, Dhabalaeswar
Publicado: (2019)