Cargando…

The ATLAS Hardware Track Trigger design towards first prototypes

In the High Luminosity LHC, planned to start with Run4 in 2026, the ATLAS experiment will be equipped with the Hardware Track Trigger (HTT) system, a dedicated hardware system able to reconstruct tracks in the silicon detectors with short latency. This HTT will be composed of about 700 ATCA boards,...

Descripción completa

Detalles Bibliográficos
Autor principal: Pastore, Francesca
Lenguaje:eng
Publicado: 2019
Materias:
Acceso en línea:https://dx.doi.org/10.22323/1.364.0119
http://cds.cern.ch/record/2692857
_version_ 1780963973158404096
author Pastore, Francesca
author_facet Pastore, Francesca
author_sort Pastore, Francesca
collection CERN
description In the High Luminosity LHC, planned to start with Run4 in 2026, the ATLAS experiment will be equipped with the Hardware Track Trigger (HTT) system, a dedicated hardware system able to reconstruct tracks in the silicon detectors with short latency. This HTT will be composed of about 700 ATCA boards, based on new technologies available on the market, like high speed links and powerful FPGAs, as well as custom-designed Associative Memories ASIC (AM), which are an evolution of those used extensively in previous experiments and in the ATLAS Fast Tracker (FTK). The HTT is designed to cope with the expected extreme high luminosity in the so called L0-only scenario, where HTT will operate at the L0 rate (1 MHz). It will provide good quality tracks to the software High-Level-Trigger (HLT), operating as coprocessor, reducing the HLT farm size by a factor of 10, by lightening the load of the software tracking. All ATLAS upgrade projects are designed also for an evolved, so-called L0/L1 architecture, where part of HTT is used in a low-latency mode (L1Track), providing tracks in regions of ATLAS at a rate of up to 4MHz, with a latency of a few micro-seconds. This second phase poses very stringent requirements on the latency budget and to the dataflow rates. All the requirements and the specifications of this system have been assessed. The design of all the components has being reviewed and validated with preliminary simulation studies. After these validations are completed, the development of the first prototypes will start. In this paper we describe the status of the design review, showing challenges and assessed specifications, towards the preparation of the first slice tests with real prototypes.
id cern-2692857
institution Organización Europea para la Investigación Nuclear
language eng
publishDate 2019
record_format invenio
spelling cern-26928572022-01-14T14:55:41Zdoi:10.22323/1.364.0119http://cds.cern.ch/record/2692857engPastore, FrancescaThe ATLAS Hardware Track Trigger design towards first prototypesParticle Physics - ExperimentIn the High Luminosity LHC, planned to start with Run4 in 2026, the ATLAS experiment will be equipped with the Hardware Track Trigger (HTT) system, a dedicated hardware system able to reconstruct tracks in the silicon detectors with short latency. This HTT will be composed of about 700 ATCA boards, based on new technologies available on the market, like high speed links and powerful FPGAs, as well as custom-designed Associative Memories ASIC (AM), which are an evolution of those used extensively in previous experiments and in the ATLAS Fast Tracker (FTK). The HTT is designed to cope with the expected extreme high luminosity in the so called L0-only scenario, where HTT will operate at the L0 rate (1 MHz). It will provide good quality tracks to the software High-Level-Trigger (HLT), operating as coprocessor, reducing the HLT farm size by a factor of 10, by lightening the load of the software tracking. All ATLAS upgrade projects are designed also for an evolved, so-called L0/L1 architecture, where part of HTT is used in a low-latency mode (L1Track), providing tracks in regions of ATLAS at a rate of up to 4MHz, with a latency of a few micro-seconds. This second phase poses very stringent requirements on the latency budget and to the dataflow rates. All the requirements and the specifications of this system have been assessed. The design of all the components has being reviewed and validated with preliminary simulation studies. After these validations are completed, the development of the first prototypes will start. In this paper we describe the status of the design review, showing challenges and assessed specifications, towards the preparation of the first slice tests with real prototypes.ATL-DAQ-PROC-2019-025oai:cds.cern.ch:26928572019-10-09
spellingShingle Particle Physics - Experiment
Pastore, Francesca
The ATLAS Hardware Track Trigger design towards first prototypes
title The ATLAS Hardware Track Trigger design towards first prototypes
title_full The ATLAS Hardware Track Trigger design towards first prototypes
title_fullStr The ATLAS Hardware Track Trigger design towards first prototypes
title_full_unstemmed The ATLAS Hardware Track Trigger design towards first prototypes
title_short The ATLAS Hardware Track Trigger design towards first prototypes
title_sort atlas hardware track trigger design towards first prototypes
topic Particle Physics - Experiment
url https://dx.doi.org/10.22323/1.364.0119
http://cds.cern.ch/record/2692857
work_keys_str_mv AT pastorefrancesca theatlashardwaretracktriggerdesigntowardsfirstprototypes
AT pastorefrancesca atlashardwaretracktriggerdesigntowardsfirstprototypes