Cargando…
Machine Learning Pipelines with Modern Big Data Tools for High Energy Physics
The effective utilization at scale of complex machine learning (ML) techniques for HEP use cases poses several technological challenges, most importantly on the actual implementation of dedicated end-to-end data pipelines. A solution to these challenges is presented, which allows training neural net...
Autores principales: | Migliorini, Matteo, Castellotti, Riccardo, Canali, Luca, Zanetti, Marco |
---|---|
Lenguaje: | eng |
Publicado: |
2019
|
Materias: | |
Acceso en línea: | http://cds.cern.ch/record/2692993 |
Ejemplares similares
-
Micro-CernVM: Slashing the Cost of Building and Deploying Virtual Machines
por: Blomer, J., et al.
Publicado: (2014) -
Using Big Data Technologies for HEP Analysis
por: Cremonesi, Matteo, et al.
Publicado: (2019) -
Big Data in HEP: A comprehensive use case study
por: Gutsche, Oliver, et al.
Publicado: (2017) -
CMS Analysis and Data Reduction with Apache Spark
por: Gutsche, Oliver, et al.
Publicado: (2017) -
GRID Storage Optimization in Transparent and User-Friendly Way for LHCb Datasets
por: Hushchyn, Mikhail, et al.
Publicado: (2017)