Cargando…

Interaction networks for the identification of boosted $H\to b\overline{b}$ decays

We develop an algorithm based on an interaction network to identify high-transverse-momentum Higgs bosons decaying to bottom quark-antiquark pairs and distinguish them from ordinary jets that reflect the configurations of quarks and gluons at short distances. The algorithm’s inputs are features of t...

Descripción completa

Detalles Bibliográficos
Autores principales: Moreno, Eric A., Nguyen, Thong Q., Vlimant, Jean-Roch, Cerri, Olmo, Newman, Harvey B., Periwal, Avikar, Spiropulu, Maria, Duarte, Javier M., Pierini, Maurizio
Lenguaje:eng
Publicado: 2019
Materias:
Acceso en línea:https://dx.doi.org/10.1103/PhysRevD.102.012010
http://cds.cern.ch/record/2693715
_version_ 1780964045304627200
author Moreno, Eric A.
Nguyen, Thong Q.
Vlimant, Jean-Roch
Cerri, Olmo
Newman, Harvey B.
Periwal, Avikar
Spiropulu, Maria
Duarte, Javier M.
Pierini, Maurizio
author_facet Moreno, Eric A.
Nguyen, Thong Q.
Vlimant, Jean-Roch
Cerri, Olmo
Newman, Harvey B.
Periwal, Avikar
Spiropulu, Maria
Duarte, Javier M.
Pierini, Maurizio
author_sort Moreno, Eric A.
collection CERN
description We develop an algorithm based on an interaction network to identify high-transverse-momentum Higgs bosons decaying to bottom quark-antiquark pairs and distinguish them from ordinary jets that reflect the configurations of quarks and gluons at short distances. The algorithm’s inputs are features of the reconstructed charged particles in a jet and the secondary vertices associated with them. Describing the jet shower as a combination of particle-to-particle and particle-to-vertex interactions, the model is trained to learn a jet representation on which the classification problem is optimized. The algorithm is trained on simulated samples of realistic LHC collisions, released by the CMS Collaboration on the CERN Open Data Portal. The interaction network achieves a drastic improvement in the identification performance with respect to state-of-the-art algorithms.
id cern-2693715
institution Organización Europea para la Investigación Nuclear
language eng
publishDate 2019
record_format invenio
spelling cern-26937152021-12-25T03:02:38Zdoi:10.1103/PhysRevD.102.012010http://cds.cern.ch/record/2693715engMoreno, Eric A.Nguyen, Thong Q.Vlimant, Jean-RochCerri, OlmoNewman, Harvey B.Periwal, AvikarSpiropulu, MariaDuarte, Javier M.Pierini, MaurizioInteraction networks for the identification of boosted $H\to b\overline{b}$ decayshep-phParticle Physics - Phenomenologyhep-exParticle Physics - ExperimentWe develop an algorithm based on an interaction network to identify high-transverse-momentum Higgs bosons decaying to bottom quark-antiquark pairs and distinguish them from ordinary jets that reflect the configurations of quarks and gluons at short distances. The algorithm’s inputs are features of the reconstructed charged particles in a jet and the secondary vertices associated with them. Describing the jet shower as a combination of particle-to-particle and particle-to-vertex interactions, the model is trained to learn a jet representation on which the classification problem is optimized. The algorithm is trained on simulated samples of realistic LHC collisions, released by the CMS Collaboration on the CERN Open Data Portal. The interaction network achieves a drastic improvement in the identification performance with respect to state-of-the-art algorithms.We develop an algorithm based on an interaction network to identify high-transverse-momentum Higgs bosons decaying to bottom quark-antiquark pairs and distinguish them from ordinary jets that reflect the configurations of quarks and gluons at short distances. The algorithm's inputs are features of the reconstructed charged particles in a jet and the secondary vertices associated with them. Describing the jet shower as a combination of particle-to-particle and particle-to-vertex interactions, the model is trained to learn a jet representation on which the classification problem is optimized. The algorithm is trained on simulated samples of realistic LHC collisions, released by the CMS Collaboration on the CERN Open Data Portal. The interaction network achieves a drastic improvement in the identification performance with respect to state-of-the-art algorithms.arXiv:1909.12285FERMILAB-PUB-19-492-CMS-Eoai:cds.cern.ch:26937152019-09-26
spellingShingle hep-ph
Particle Physics - Phenomenology
hep-ex
Particle Physics - Experiment
Moreno, Eric A.
Nguyen, Thong Q.
Vlimant, Jean-Roch
Cerri, Olmo
Newman, Harvey B.
Periwal, Avikar
Spiropulu, Maria
Duarte, Javier M.
Pierini, Maurizio
Interaction networks for the identification of boosted $H\to b\overline{b}$ decays
title Interaction networks for the identification of boosted $H\to b\overline{b}$ decays
title_full Interaction networks for the identification of boosted $H\to b\overline{b}$ decays
title_fullStr Interaction networks for the identification of boosted $H\to b\overline{b}$ decays
title_full_unstemmed Interaction networks for the identification of boosted $H\to b\overline{b}$ decays
title_short Interaction networks for the identification of boosted $H\to b\overline{b}$ decays
title_sort interaction networks for the identification of boosted $h\to b\overline{b}$ decays
topic hep-ph
Particle Physics - Phenomenology
hep-ex
Particle Physics - Experiment
url https://dx.doi.org/10.1103/PhysRevD.102.012010
http://cds.cern.ch/record/2693715
work_keys_str_mv AT morenoerica interactionnetworksfortheidentificationofboostedhtoboverlinebdecays
AT nguyenthongq interactionnetworksfortheidentificationofboostedhtoboverlinebdecays
AT vlimantjeanroch interactionnetworksfortheidentificationofboostedhtoboverlinebdecays
AT cerriolmo interactionnetworksfortheidentificationofboostedhtoboverlinebdecays
AT newmanharveyb interactionnetworksfortheidentificationofboostedhtoboverlinebdecays
AT periwalavikar interactionnetworksfortheidentificationofboostedhtoboverlinebdecays
AT spiropulumaria interactionnetworksfortheidentificationofboostedhtoboverlinebdecays
AT duartejavierm interactionnetworksfortheidentificationofboostedhtoboverlinebdecays
AT pierinimaurizio interactionnetworksfortheidentificationofboostedhtoboverlinebdecays