Cargando…
Advances on the modelling of the time evolution of dynamic aperture of hadron circular accelerators
Determining a model for the time scaling of the dynamic aperture of a circular accelerator is a topic of strong interest and intense research efforts in accelerator physics. The motivation arises in the possibility of finding a method to reliably extrapolate the results of numerical simulations well...
Autores principales: | , , , , , |
---|---|
Lenguaje: | eng |
Publicado: |
2019
|
Materias: | |
Acceso en línea: | https://dx.doi.org/10.1103/PhysRevAccelBeams.22.104003 http://cds.cern.ch/record/2694043 |
Sumario: | Determining a model for the time scaling of the dynamic aperture of a circular accelerator is a topic of strong interest and intense research efforts in accelerator physics. The motivation arises in the possibility of finding a method to reliably extrapolate the results of numerical simulations well beyond what is currently possible in terms of CPU time. In earlier work, a proposal for a model based on Nekhoroshev theorem and Kolmogorov--Arnold--Moser theory was made. This model has been studied in detail and proved successful in describing the evolution of the dynamic aperture in numerical simulations, however, a number of shortcomings had been identified and new models are proposed in this paper, which solve the observed issues. The new models have been benchmarked against numerical simulations for a simple system, the 4D H\'enon map, as well as a realistic, non-linear representation of the beam dynamics in the LHC at 6.5 TeV providing in both cases excellent results. |
---|