Cargando…

K$^{0}$-$\overline{K}^{0}$ mixing and the CKM parameters ($\varrho$,$\eta$) from the Laplace sum rules

Using the Laplace sum rule (LSR) approach, which is less affected by the contribution of the higher mass hadronic states than the Finite Energy Sum Rule (FESR), we test the reliability of the existing estimate of the K^0-\overline {K}^0 mixing parameter from the four-quark two-point correlator. We o...

Descripción completa

Detalles Bibliográficos
Autor principal: Narison, Stéphan
Lenguaje:eng
Publicado: 1994
Materias:
Acceso en línea:https://dx.doi.org/10.1016/0370-2693(95)00295-V
http://cds.cern.ch/record/269460
Descripción
Sumario:Using the Laplace sum rule (LSR) approach, which is less affected by the contribution of the higher mass hadronic states than the Finite Energy Sum Rule (FESR), we test the reliability of the existing estimate of the K^0-\overline {K}^0 mixing parameter from the four-quark two-point correlator. We obtain, for the renormalization group invariant B-parameter \Big[ f_K/(1.2f_\pi)\Big]^2 \hat {B}_K, the upper bound: 0.83 and the best estimate: 0.55 \pm 0.09. Combining the previous estimate with the updated value of f_B\sqrt{B_B}=(1.49\pm 0.14)f_\pi obtained from the same LSR method, one can deduce the best fitted values (\rho,\eta)\approx (0.41,0.09) of the CKM parameters.