Cargando…

Observation of the Standard Model Higgs boson produced in association with a pair of top quarks at $\sqrt{s} = 13 \, \text{TeV}$ with the ATLAS experiment at the LHC with emphasis on the decay of the Higgs boson into a $b\bar{b}$-pair in the single-lepton channel

The top quark is the heaviest elementary particle in the Standard Model and has an expected Yukawa coupling to the Higgs boson of order unity. The value of this coupling is a key ingredient to unravel the nature of the observed Higgs boson. The most favourable production mode that has a direct sensi...

Descripción completa

Detalles Bibliográficos
Autor principal: Mellenthin, Johannes
Lenguaje:eng
Publicado: 2019
Materias:
Acceso en línea:http://cds.cern.ch/record/2697280
_version_ 1780964209299816448
author Mellenthin, Johannes
author_facet Mellenthin, Johannes
author_sort Mellenthin, Johannes
collection CERN
description The top quark is the heaviest elementary particle in the Standard Model and has an expected Yukawa coupling to the Higgs boson of order unity. The value of this coupling is a key ingredient to unravel the nature of the observed Higgs boson. The most favourable production mode that has a direct sensitivity to this coupling is the production of a Higgs boson in association with a top-quark pair, $t\bar{t}H$. This process was observed based on the analysis of proton-proton collision data at $\sqrt{s} = 13 \, \text{TeV}$ recorded with the ATLAS experiment at the LHC. Using data corresponding to integrated luminosities of up to $79.8 \, \text{fb}^{-1}$, and considering the Higgs boson decays into $b\bar{b}$, $WW^{*}$, $\tau^{+} \tau^{-}$, $\gamma \gamma$, and $ZZ^{*}$ yields a signal strength of \begin{equation*} \mu = 1.32 \pm 0.18 (\text{stat.})^{+0.21}_{-0.19}(\text{syst.}) = 1.32^{+0.28}_{-0.26}, \end{equation*} corresponding to an observed (expected) signal significance of 5.8 (4.9) standard deviations. The analysis targeting the Higgs boson decay channel with the highest branching ratio, $t\bar{t}H (H \rightarrow b\bar{b})$, uses data corresponding to an integrated luminosity of $36.1 \, \text{fb}^{-1}$ and will be presented in detail. A focus is placed on the single-lepton channel. The dominant background for this channel is $t\bar{t}b\bar{b}$. One of the small backgrounds originates from non-prompt leptons and fake leptons, which originate from jets misidentified as a reconstructed lepton. This background requires a special treatment in signal regions with many jets and $b$-jets. Despite its small contribution, an estimate of non-prompt leptons and fake leptons is important for a successful measurement in the $t\bar{t}H$ analysis as well as other analyses with leptonic final states. In this thesis, a fully data-driven technique - the matrix method - is presented. For the first time, efficiencies for the 2017 dataset are shown. In addition, a tag rate function could be employed to increase the performance of the matrix method for a fixed $b$-tagging working point. Finally, the performance of neural networks using low-level input variables is examined to discriminate the $t\bar{t}H$ signal from backgrounds.
id cern-2697280
institution Organización Europea para la Investigación Nuclear
language eng
publishDate 2019
record_format invenio
spelling cern-26972802019-11-26T14:04:15Zhttp://cds.cern.ch/record/2697280engMellenthin, JohannesObservation of the Standard Model Higgs boson produced in association with a pair of top quarks at $\sqrt{s} = 13 \, \text{TeV}$ with the ATLAS experiment at the LHC with emphasis on the decay of the Higgs boson into a $b\bar{b}$-pair in the single-lepton channelParticle Physics - ExperimentThe top quark is the heaviest elementary particle in the Standard Model and has an expected Yukawa coupling to the Higgs boson of order unity. The value of this coupling is a key ingredient to unravel the nature of the observed Higgs boson. The most favourable production mode that has a direct sensitivity to this coupling is the production of a Higgs boson in association with a top-quark pair, $t\bar{t}H$. This process was observed based on the analysis of proton-proton collision data at $\sqrt{s} = 13 \, \text{TeV}$ recorded with the ATLAS experiment at the LHC. Using data corresponding to integrated luminosities of up to $79.8 \, \text{fb}^{-1}$, and considering the Higgs boson decays into $b\bar{b}$, $WW^{*}$, $\tau^{+} \tau^{-}$, $\gamma \gamma$, and $ZZ^{*}$ yields a signal strength of \begin{equation*} \mu = 1.32 \pm 0.18 (\text{stat.})^{+0.21}_{-0.19}(\text{syst.}) = 1.32^{+0.28}_{-0.26}, \end{equation*} corresponding to an observed (expected) signal significance of 5.8 (4.9) standard deviations. The analysis targeting the Higgs boson decay channel with the highest branching ratio, $t\bar{t}H (H \rightarrow b\bar{b})$, uses data corresponding to an integrated luminosity of $36.1 \, \text{fb}^{-1}$ and will be presented in detail. A focus is placed on the single-lepton channel. The dominant background for this channel is $t\bar{t}b\bar{b}$. One of the small backgrounds originates from non-prompt leptons and fake leptons, which originate from jets misidentified as a reconstructed lepton. This background requires a special treatment in signal regions with many jets and $b$-jets. Despite its small contribution, an estimate of non-prompt leptons and fake leptons is important for a successful measurement in the $t\bar{t}H$ analysis as well as other analyses with leptonic final states. In this thesis, a fully data-driven technique - the matrix method - is presented. For the first time, efficiencies for the 2017 dataset are shown. In addition, a tag rate function could be employed to increase the performance of the matrix method for a fixed $b$-tagging working point. Finally, the performance of neural networks using low-level input variables is examined to discriminate the $t\bar{t}H$ signal from backgrounds.CERN-THESIS-2019-182II.Physik-UniGö-Diss-2019/02oai:cds.cern.ch:26972802019-10-30T12:21:02Z
spellingShingle Particle Physics - Experiment
Mellenthin, Johannes
Observation of the Standard Model Higgs boson produced in association with a pair of top quarks at $\sqrt{s} = 13 \, \text{TeV}$ with the ATLAS experiment at the LHC with emphasis on the decay of the Higgs boson into a $b\bar{b}$-pair in the single-lepton channel
title Observation of the Standard Model Higgs boson produced in association with a pair of top quarks at $\sqrt{s} = 13 \, \text{TeV}$ with the ATLAS experiment at the LHC with emphasis on the decay of the Higgs boson into a $b\bar{b}$-pair in the single-lepton channel
title_full Observation of the Standard Model Higgs boson produced in association with a pair of top quarks at $\sqrt{s} = 13 \, \text{TeV}$ with the ATLAS experiment at the LHC with emphasis on the decay of the Higgs boson into a $b\bar{b}$-pair in the single-lepton channel
title_fullStr Observation of the Standard Model Higgs boson produced in association with a pair of top quarks at $\sqrt{s} = 13 \, \text{TeV}$ with the ATLAS experiment at the LHC with emphasis on the decay of the Higgs boson into a $b\bar{b}$-pair in the single-lepton channel
title_full_unstemmed Observation of the Standard Model Higgs boson produced in association with a pair of top quarks at $\sqrt{s} = 13 \, \text{TeV}$ with the ATLAS experiment at the LHC with emphasis on the decay of the Higgs boson into a $b\bar{b}$-pair in the single-lepton channel
title_short Observation of the Standard Model Higgs boson produced in association with a pair of top quarks at $\sqrt{s} = 13 \, \text{TeV}$ with the ATLAS experiment at the LHC with emphasis on the decay of the Higgs boson into a $b\bar{b}$-pair in the single-lepton channel
title_sort observation of the standard model higgs boson produced in association with a pair of top quarks at $\sqrt{s} = 13 \, \text{tev}$ with the atlas experiment at the lhc with emphasis on the decay of the higgs boson into a $b\bar{b}$-pair in the single-lepton channel
topic Particle Physics - Experiment
url http://cds.cern.ch/record/2697280
work_keys_str_mv AT mellenthinjohannes observationofthestandardmodelhiggsbosonproducedinassociationwithapairoftopquarksatsqrts13texttevwiththeatlasexperimentatthelhcwithemphasisonthedecayofthehiggsbosonintoabbarbpairinthesingleleptonchannel