Cargando…

From positive geometries to a coaction on hypergeometric functions

It is well known that Feynman integrals in dimensional regularization often evaluate to functions of hypergeometric type. Inspired by a recent proposal for a coaction on one-loop Feynman integrals in dimensional regularization, we use intersection numbers and twisted homology theory to define a coac...

Descripción completa

Detalles Bibliográficos
Autores principales: Abreu, Samuel, Britto, Ruth, Duhr, Claude, Gardi, Einan, Matthew, James
Lenguaje:eng
Publicado: 2019
Materias:
Acceso en línea:https://dx.doi.org/10.1007/JHEP02(2020)122
http://cds.cern.ch/record/2698531
Descripción
Sumario:It is well known that Feynman integrals in dimensional regularization often evaluate to functions of hypergeometric type. Inspired by a recent proposal for a coaction on one-loop Feynman integrals in dimensional regularization, we use intersection numbers and twisted homology theory to define a coaction on certain hypergeometric functions. The functions we consider admit an integral representation where both the integrand and the contour of integration are associated with positive geometries. As in dimensionally- regularized Feynman integrals, endpoint singularities are regularized by means of exponents controlled by a small parameter ϵ. We show that the coaction defined on this class of integral is consistent, upon expansion in ϵ, with the well-known coaction on multiple polylogarithms. We illustrate the validity of our construction by explicitly determining the coaction on various types of hypergeometric $_{p+1}$F$_{p}$ and Appell functions.