Cargando…
End-to-end particle and event identification at the Large Hadron Collider with CMS Open Data
From particle identification to the discovery of the Higgs boson, deep learning algorithms have become an increasingly important tool for data analysis at the Large Hadron Collider (LHC). We present an innovative end-to-end deep learning approach for jet identification at the Compact Muon Solenoid (...
Autores principales: | Alison, John, An, Sitong, Bryant, Patrick, Burkle, Bjorn, Gleyzer, Sergei, Narain, Meenakshi, Paulini, Manfred, Poczos, Barnabas, Usai, Emanuele |
---|---|
Lenguaje: | eng |
Publicado: |
2019
|
Materias: | |
Acceso en línea: | http://cds.cern.ch/record/2698977 |
Ejemplares similares
-
MICROMEGAS chambers for hadronic calorimetry at a future linear collider
por: Adloff, C., et al.
Publicado: (2009) -
Front-end Electronics for the CALICE/EUDET Calorimeters
por: Cornat, Remi
Publicado: (2009) -
End-to-End Jet Classification of Quarks and Gluons with the CMS Open Data
por: Andrews, M., et al.
Publicado: (2019) -
Hadronic showers in the CALICE calorimeter prototypes
por: Simon, Frank
Publicado: (2009) -
Energy Reconstruction of Hadron Showers in the CALICE Calorimeters
por: Simon, Frank
Publicado: (2009)