Cargando…

An introduction to the Kolmogorov-Bernoulli equivalence

This book offers an introduction to a classical problem in ergodic theory and smooth dynamics, namely, the Kolmogorov–Bernoulli (non)equivalence problem, and presents recent results in this field. Starting with a crash course on ergodic theory, it uses the class of ergodic automorphisms of the two t...

Descripción completa

Detalles Bibliográficos
Autores principales: Ponce, Gabriel, Varão, Régis
Lenguaje:eng
Publicado: Springer 2019
Materias:
Acceso en línea:https://dx.doi.org/10.1007/978-3-030-27390-3
http://cds.cern.ch/record/2700035
_version_ 1780964466143264768
author Ponce, Gabriel
Varão, Régis
author_facet Ponce, Gabriel
Varão, Régis
author_sort Ponce, Gabriel
collection CERN
description This book offers an introduction to a classical problem in ergodic theory and smooth dynamics, namely, the Kolmogorov–Bernoulli (non)equivalence problem, and presents recent results in this field. Starting with a crash course on ergodic theory, it uses the class of ergodic automorphisms of the two tori as a toy model to explain the main ideas and technicalities arising in the aforementioned problem. The level of generality then increases step by step, extending the results to the class of uniformly hyperbolic diffeomorphisms, and concludes with a survey of more recent results in the area concerning, for example, the class of partially hyperbolic diffeomorphisms. It is hoped that with this type of presentation, nonspecialists and young researchers in dynamical systems may be encouraged to pursue problems in this area.
id cern-2700035
institution Organización Europea para la Investigación Nuclear
language eng
publishDate 2019
publisher Springer
record_format invenio
spelling cern-27000352021-04-21T18:15:50Zdoi:10.1007/978-3-030-27390-3http://cds.cern.ch/record/2700035engPonce, GabrielVarão, RégisAn introduction to the Kolmogorov-Bernoulli equivalenceMathematical Physics and MathematicsThis book offers an introduction to a classical problem in ergodic theory and smooth dynamics, namely, the Kolmogorov–Bernoulli (non)equivalence problem, and presents recent results in this field. Starting with a crash course on ergodic theory, it uses the class of ergodic automorphisms of the two tori as a toy model to explain the main ideas and technicalities arising in the aforementioned problem. The level of generality then increases step by step, extending the results to the class of uniformly hyperbolic diffeomorphisms, and concludes with a survey of more recent results in the area concerning, for example, the class of partially hyperbolic diffeomorphisms. It is hoped that with this type of presentation, nonspecialists and young researchers in dynamical systems may be encouraged to pursue problems in this area.Springeroai:cds.cern.ch:27000352019
spellingShingle Mathematical Physics and Mathematics
Ponce, Gabriel
Varão, Régis
An introduction to the Kolmogorov-Bernoulli equivalence
title An introduction to the Kolmogorov-Bernoulli equivalence
title_full An introduction to the Kolmogorov-Bernoulli equivalence
title_fullStr An introduction to the Kolmogorov-Bernoulli equivalence
title_full_unstemmed An introduction to the Kolmogorov-Bernoulli equivalence
title_short An introduction to the Kolmogorov-Bernoulli equivalence
title_sort introduction to the kolmogorov-bernoulli equivalence
topic Mathematical Physics and Mathematics
url https://dx.doi.org/10.1007/978-3-030-27390-3
http://cds.cern.ch/record/2700035
work_keys_str_mv AT poncegabriel anintroductiontothekolmogorovbernoulliequivalence
AT varaoregis anintroductiontothekolmogorovbernoulliequivalence
AT poncegabriel introductiontothekolmogorovbernoulliequivalence
AT varaoregis introductiontothekolmogorovbernoulliequivalence