Cargando…
The DNNLikelihood: enhancing likelihood distribution with Deep Learning
We introduce the DNNLikelihood, a novel framework to easily encode, through deep neural networks (DNN), the full experimental information contained in complicated likelihood functions (LFs). We show how to efficiently parametrise the LF, treated as a multivariate function of parameters of interest a...
Autores principales: | Coccaro, Andrea, Pierini, Maurizio, Silvestrini, Luca, Torre, Riccardo |
---|---|
Lenguaje: | eng |
Publicado: |
2019
|
Materias: | |
Acceso en línea: | https://dx.doi.org/10.1140/epjc/s10052-020-8230-1 http://cds.cern.ch/record/2700228 |
Ejemplares similares
-
Enhancing likelihood distribution with the DNNLikelihood framework
por: Coccaro, Andrea
Publicado: (2021) -
Electroweak precision constraints at present and future colliders
por: de Blas, Jorge, et al.
Publicado: (2016) -
The Global Electroweak and Higgs Fits in the LHC era
por: de Blas, Jorge, et al.
Publicado: (2017) -
Improving Variational Autoencoders for New Physics Detection at the LHC with Normalizing Flows
por: Jawahar, Pratik, et al.
Publicado: (2021) -
LHC physics dataset for unsupervised New Physics detection at 40 MHz
por: Govorkova, Ekaterina, et al.
Publicado: (2021)