Cargando…
Light quark masses in N_f = 2+1 lattice QCD with Wilson fermions
We present a lattice QCD determination of light quark masses with three sea-quark flavours ($N_\mathrm{f}=2+1$). Bare quark masses are known from PCAC relations in the framework of CLS lattice computations with a non-perturbatively improved Wilson-Clover action and a tree-level Symanzik improved gau...
Autores principales: | , , , , , , , |
---|---|
Lenguaje: | eng |
Publicado: |
2019
|
Materias: | |
Acceso en línea: | https://dx.doi.org/10.1140/epjc/s10052-020-7698-z http://cds.cern.ch/record/2702258 |
_version_ | 1780964544106987520 |
---|---|
author | Bruno, Mattia Campos, Isabel Fritzsch, Patrick Koponen, Jonna Pena, Carlos Preti, David Ramos, Alberto Vladikas, Anastassios |
author_facet | Bruno, Mattia Campos, Isabel Fritzsch, Patrick Koponen, Jonna Pena, Carlos Preti, David Ramos, Alberto Vladikas, Anastassios |
author_sort | Bruno, Mattia |
collection | CERN |
description | We present a lattice QCD determination of light quark masses with three sea-quark flavours ($N_\mathrm{f}=2+1$). Bare quark masses are known from PCAC relations in the framework of CLS lattice computations with a non-perturbatively improved Wilson-Clover action and a tree-level Symanzik improved gauge action. They are fully non-perturbatively improved, including the recently computed Symanzik counter-term $b_{\mathrm{A}} - b_{\mathrm{P}}$. The mass renormalisation at hadronic scales and the renormalisation group running over a wide range of scales are known non-perturbatively in the Schrödinger functional scheme. In the present paper we perform detailed extrapolations to the physical point, obtaining (for the four-flavour theory) $m_{\mathrm{u}/\mathrm{d}}(2~\mathrm{GeV})= 3.54(12)(9)~\mathrm{MeV}$ and $m_{\mathrm{s}}(2~\mathrm{GeV}) = 95.7(2.5)(2.4)~\mathrm{MeV}$ in the $\overline{\mathrm{MS}}$ scheme. For the mass ratio we have $m_{\mathrm{s}}/m_{\mathrm{u}/\mathrm{d}}= 27.0(1.0)(0.4)$. The RGI values in the three-flavour theory are $M_{\mathrm{u}/\mathrm{d}}= 4.70(15)(12)~\mathrm{MeV}$ and $M_{\mathrm{s}}= 127.0(3.1)(3.2)~\mathrm{MeV}$. |
id | cern-2702258 |
institution | Organización Europea para la Investigación Nuclear |
language | eng |
publishDate | 2019 |
record_format | invenio |
spelling | cern-27022582023-04-14T03:10:04Zdoi:10.1140/epjc/s10052-020-7698-zdoi:10.1140/epjc/s10052-020-7698-zhttp://cds.cern.ch/record/2702258engBruno, MattiaCampos, IsabelFritzsch, PatrickKoponen, JonnaPena, CarlosPreti, DavidRamos, AlbertoVladikas, AnastassiosLight quark masses in N_f = 2+1 lattice QCD with Wilson fermionshep-latParticle Physics - LatticeWe present a lattice QCD determination of light quark masses with three sea-quark flavours ($N_\mathrm{f}=2+1$). Bare quark masses are known from PCAC relations in the framework of CLS lattice computations with a non-perturbatively improved Wilson-Clover action and a tree-level Symanzik improved gauge action. They are fully non-perturbatively improved, including the recently computed Symanzik counter-term $b_{\mathrm{A}} - b_{\mathrm{P}}$. The mass renormalisation at hadronic scales and the renormalisation group running over a wide range of scales are known non-perturbatively in the Schrödinger functional scheme. In the present paper we perform detailed extrapolations to the physical point, obtaining (for the four-flavour theory) $m_{\mathrm{u}/\mathrm{d}}(2~\mathrm{GeV})= 3.54(12)(9)~\mathrm{MeV}$ and $m_{\mathrm{s}}(2~\mathrm{GeV}) = 95.7(2.5)(2.4)~\mathrm{MeV}$ in the $\overline{\mathrm{MS}}$ scheme. For the mass ratio we have $m_{\mathrm{s}}/m_{\mathrm{u}/\mathrm{d}}= 27.0(1.0)(0.4)$. The RGI values in the three-flavour theory are $M_{\mathrm{u}/\mathrm{d}}= 4.70(15)(12)~\mathrm{MeV}$ and $M_{\mathrm{s}}= 127.0(3.1)(3.2)~\mathrm{MeV}$.We present a lattice QCD determination of light quark masses with three sea-quark flavours ($N_f = 2+1$). Bare quark masses are known from PCAC relations in the framework of CLS lattice computations with a non-perturbatively improved Wilson-Clover action and a tree-level Symanzik improved gauge action. They are fully non-perturbatively improved, including the recently computed Symanzik counter-term $b_{\rm A} - b_{\rm P}$. The mass renormalisation at hadronic scales and the renormalisation group running over a wide range of scales are known non-perturbatively in the Schr\"odinger functional scheme. In the present paper we perform detailed extrapolations to the physical point, obtaining (for the four-flavour theory) $m_{u/d}(2{\rm GeV}) = 3.54(12)(9)$ MeV and $m_s(2{\rm GeV}) = 95.7(2.5)(2.4)$ MeV in the $\bar{MS}$ scheme. For the mass ratio we have $m_s/m_{u/d} = 27.0(1.0)(0.4)$. The RGI values in the three-flavour theory are $M_{u/d} = 4.70(15)(12)$ MeV and $M_s = 127.0(3.1)(3.2)$ MeV.arXiv:1911.08025CERN-TH-2019-174IFT-UAM/CSIC-19-151KEK-CP-372oai:cds.cern.ch:27022582019-11-18 |
spellingShingle | hep-lat Particle Physics - Lattice Bruno, Mattia Campos, Isabel Fritzsch, Patrick Koponen, Jonna Pena, Carlos Preti, David Ramos, Alberto Vladikas, Anastassios Light quark masses in N_f = 2+1 lattice QCD with Wilson fermions |
title | Light quark masses in N_f = 2+1 lattice QCD with Wilson fermions |
title_full | Light quark masses in N_f = 2+1 lattice QCD with Wilson fermions |
title_fullStr | Light quark masses in N_f = 2+1 lattice QCD with Wilson fermions |
title_full_unstemmed | Light quark masses in N_f = 2+1 lattice QCD with Wilson fermions |
title_short | Light quark masses in N_f = 2+1 lattice QCD with Wilson fermions |
title_sort | light quark masses in n_f = 2+1 lattice qcd with wilson fermions |
topic | hep-lat Particle Physics - Lattice |
url | https://dx.doi.org/10.1140/epjc/s10052-020-7698-z https://dx.doi.org/10.1140/epjc/s10052-020-7698-z http://cds.cern.ch/record/2702258 |
work_keys_str_mv | AT brunomattia lightquarkmassesinnf21latticeqcdwithwilsonfermions AT camposisabel lightquarkmassesinnf21latticeqcdwithwilsonfermions AT fritzschpatrick lightquarkmassesinnf21latticeqcdwithwilsonfermions AT koponenjonna lightquarkmassesinnf21latticeqcdwithwilsonfermions AT penacarlos lightquarkmassesinnf21latticeqcdwithwilsonfermions AT pretidavid lightquarkmassesinnf21latticeqcdwithwilsonfermions AT ramosalberto lightquarkmassesinnf21latticeqcdwithwilsonfermions AT vladikasanastassios lightquarkmassesinnf21latticeqcdwithwilsonfermions |