Cargando…
Bayesian Optimization for machine learning algorithms in the context of Higgs searches at the CMS experiment
Machine Learning algorithms, such as Boosted Decisions Trees and Deep Neural Network, are widely used in High-Energy-Physics. The aim of this study is to apply Bayesian Optimization to tune the hyperparameters used in a machine learning algorithm. This algorithm performs an energy regression process...
Autor principal: | Kiss, Oriel |
---|---|
Lenguaje: | eng |
Publicado: |
2019
|
Materias: | |
Acceso en línea: | http://cds.cern.ch/record/2702355 |
Ejemplares similares
-
Exploiting Apache Spark platform for CMS computing analytics
por: Meoni, Marco, et al.
Publicado: (2017) -
Identifying the relevant dependencies of the neural network response on characteristics of the input space
por: Wunsch, Stefan, et al.
Publicado: (2018) -
Porting CMS Heterogeneous Pixel Reconstruction to Kokkos
por: Kortelainen, Matti J., et al.
Publicado: (2021) -
Review of High-Quality Random Number Generators
por: James, Frederick, et al.
Publicado: (2019) -
HEP Software Foundation Community White Paper Working Group -- Data Organization, Management and Access (DOMA)
por: Berzano, Dario, et al.
Publicado: (2018)