Cargando…
LHCb Upstream Tracker box: Thermal studies and conceptual design
The LHC (Large Hadron Collider) will have a long shut down in the years of 2019 and 2020, referred to as LS2. During this stop the LHC injector complex will be upgraded to increase the luminosities, which will be the first step of the high luminosity LHC program (which will be realized during LS3 th...
Autor principal: | |
---|---|
Lenguaje: | eng |
Publicado: |
DiVa
2016
|
Materias: | |
Acceso en línea: | http://cds.cern.ch/record/2703531 |
Sumario: | The LHC (Large Hadron Collider) will have a long shut down in the years of 2019 and 2020, referred to as LS2. During this stop the LHC injector complex will be upgraded to increase the luminosities, which will be the first step of the high luminosity LHC program (which will be realized during LS3 that takes place in 2024-2026). The LHCb experiment, whose main purpose is to study the CP-violation, will during this long stop be upgraded in order to withstand a higher radiation dose, and to be able to read out the detector at a rate of 40MHz,compared to 1MHz at present. This change will improve the trigger efficiency significantly. One of the LHCb sub-detectors the Trigger Tracker (TT), will be replaced by a new sub-detector called UT. This report presents the early stage design (preparation for mock-up building) of the box that will be isolating the new UT detector from the surroundings and to ensure optimal detector operation. Methods to fulfill requirements such as light and gas tightness, Faraday-cage behavior and condensation free temperatures, without breaking the fragile beryllium beam pipe, are established. |
---|