Cargando…

A statistical mechanical interpretation of algorithmic information theory

This book is the first one that provides a solid bridge between algorithmic information theory and statistical mechanics. Algorithmic information theory (AIT) is a theory of program size and recently is also known as algorithmic randomness. AIT provides a framework for characterizing the notion of r...

Descripción completa

Detalles Bibliográficos
Autor principal: Tadaki, Kohtaro
Lenguaje:eng
Publicado: Springer 2019
Materias:
Acceso en línea:https://dx.doi.org/10.1007/978-981-15-0739-7
http://cds.cern.ch/record/2704053
_version_ 1780964660657258496
author Tadaki, Kohtaro
author_facet Tadaki, Kohtaro
author_sort Tadaki, Kohtaro
collection CERN
description This book is the first one that provides a solid bridge between algorithmic information theory and statistical mechanics. Algorithmic information theory (AIT) is a theory of program size and recently is also known as algorithmic randomness. AIT provides a framework for characterizing the notion of randomness for an individual object and for studying it closely and comprehensively. In this book, a statistical mechanical interpretation of AIT is introduced while explaining the basic notions and results of AIT to the reader who has an acquaintance with an elementary theory of computation. A simplification of the setting of AIT is the noiseless source coding in information theory. First, in the book, a statistical mechanical interpretation of the noiseless source coding scheme is introduced. It can be seen that the notions in statistical mechanics such as entropy, temperature, and thermal equilibrium are translated into the context of noiseless source coding in a natural manner. Then, the framework of AIT is introduced. On this basis, the introduction of a statistical mechanical interpretation of AIT is begun. Namely, the notion of thermodynamic quantities, such as free energy, energy, and entropy, is introduced into AIT. In the interpretation, the temperature is shown to be equal to the partial randomness of the values of all these thermodynamic quantities, where the notion of partial randomness is a stronger representation of the compression rate measured by means of program-size complexity. Additionally, it is demonstrated that this situation holds for the temperature itself as a thermodynamic quantity. That is, for each of all the thermodynamic quantities above, the computability of its value at temperature T gives a sufficient condition for T to be a fixed point on partial randomness. In this groundbreaking book, the current status of the interpretation from both mathematical and physical points of view is reported. For example, a total statistical mechanical interpretation of AIT that actualizes a perfect correspondence to normal statistical mechanics can be developed by identifying a microcanonical ensemble in the framework of AIT. As a result, the statistical mechanical meaning of the thermodynamic quantities of AIT is clarified. In the book, the close relationship of the interpretation to Landauer's principle is pointed out.
id cern-2704053
institution Organización Europea para la Investigación Nuclear
language eng
publishDate 2019
publisher Springer
record_format invenio
spelling cern-27040532021-04-21T18:14:43Zdoi:10.1007/978-981-15-0739-7http://cds.cern.ch/record/2704053engTadaki, KohtaroA statistical mechanical interpretation of algorithmic information theoryMathematical Physics and MathematicsThis book is the first one that provides a solid bridge between algorithmic information theory and statistical mechanics. Algorithmic information theory (AIT) is a theory of program size and recently is also known as algorithmic randomness. AIT provides a framework for characterizing the notion of randomness for an individual object and for studying it closely and comprehensively. In this book, a statistical mechanical interpretation of AIT is introduced while explaining the basic notions and results of AIT to the reader who has an acquaintance with an elementary theory of computation. A simplification of the setting of AIT is the noiseless source coding in information theory. First, in the book, a statistical mechanical interpretation of the noiseless source coding scheme is introduced. It can be seen that the notions in statistical mechanics such as entropy, temperature, and thermal equilibrium are translated into the context of noiseless source coding in a natural manner. Then, the framework of AIT is introduced. On this basis, the introduction of a statistical mechanical interpretation of AIT is begun. Namely, the notion of thermodynamic quantities, such as free energy, energy, and entropy, is introduced into AIT. In the interpretation, the temperature is shown to be equal to the partial randomness of the values of all these thermodynamic quantities, where the notion of partial randomness is a stronger representation of the compression rate measured by means of program-size complexity. Additionally, it is demonstrated that this situation holds for the temperature itself as a thermodynamic quantity. That is, for each of all the thermodynamic quantities above, the computability of its value at temperature T gives a sufficient condition for T to be a fixed point on partial randomness. In this groundbreaking book, the current status of the interpretation from both mathematical and physical points of view is reported. For example, a total statistical mechanical interpretation of AIT that actualizes a perfect correspondence to normal statistical mechanics can be developed by identifying a microcanonical ensemble in the framework of AIT. As a result, the statistical mechanical meaning of the thermodynamic quantities of AIT is clarified. In the book, the close relationship of the interpretation to Landauer's principle is pointed out.Springeroai:cds.cern.ch:27040532019
spellingShingle Mathematical Physics and Mathematics
Tadaki, Kohtaro
A statistical mechanical interpretation of algorithmic information theory
title A statistical mechanical interpretation of algorithmic information theory
title_full A statistical mechanical interpretation of algorithmic information theory
title_fullStr A statistical mechanical interpretation of algorithmic information theory
title_full_unstemmed A statistical mechanical interpretation of algorithmic information theory
title_short A statistical mechanical interpretation of algorithmic information theory
title_sort statistical mechanical interpretation of algorithmic information theory
topic Mathematical Physics and Mathematics
url https://dx.doi.org/10.1007/978-981-15-0739-7
http://cds.cern.ch/record/2704053
work_keys_str_mv AT tadakikohtaro astatisticalmechanicalinterpretationofalgorithmicinformationtheory
AT tadakikohtaro statisticalmechanicalinterpretationofalgorithmicinformationtheory