Cargando…
Particle Generative Adversarial Networks for full-event simulation at the LHC and their application to pileup description
We investigate how a Generative Adversarial Network could be used to generate a list of particle four-momenta from LHC proton collisions, allowing one to define a generative model that could abstract from the irregularities of typical detector geometries. As an example of application, we show how su...
Autores principales: | Arjona Martínez, Jesús, Nguyen, Thong Q., Pierini, Maurizio, Spiropulu, Maria, Vlimant, Jean-Roch |
---|---|
Lenguaje: | eng |
Publicado: |
2019
|
Materias: | |
Acceso en línea: | https://dx.doi.org/10.1088/1742-6596/1525/1/012081 http://cds.cern.ch/record/2705530 |
Ejemplares similares
-
Pileup mitigation at the Large Hadron Collider with Graph Neural Networks
por: Arjona Martínez, J., et al.
Publicado: (2018) -
Adversarially Learned Anomaly Detection on CMS Open Data: re-discovering the top quark
por: Knapp, Oliver, et al.
Publicado: (2020) -
Pileup Per Particle Identification
por: Bertolini, Daniele, et al.
Publicado: (2014) -
Interaction networks for the identification of boosted $H\to b\overline{b}$ decays
por: Moreno, Eric A., et al.
Publicado: (2019) -
JEDI-net: a jet identification algorithm based on interaction networks
por: Moreno, Eric A., et al.
Publicado: (2019)