Cargando…

Three-loop contributions to the $\rho$ parameter and iterated integrals of modular forms

We compute fully analytic results for the three-loop diagrams involving two different massive quark flavours contributing to the ρ parameter in the Standard Model. We find that the results involve exactly the same class of functions that appears in the well-known sunrise and banana graphs, namely el...

Descripción completa

Detalles Bibliográficos
Autores principales: Abreu, Samuel, Becchetti, Matteo, Duhr, Claude, Marzucca, Robin
Lenguaje:eng
Publicado: 2019
Materias:
Acceso en línea:https://dx.doi.org/10.1007/JHEP02(2020)050
http://cds.cern.ch/record/2705804
_version_ 1780964834974629888
author Abreu, Samuel
Becchetti, Matteo
Duhr, Claude
Marzucca, Robin
author_facet Abreu, Samuel
Becchetti, Matteo
Duhr, Claude
Marzucca, Robin
author_sort Abreu, Samuel
collection CERN
description We compute fully analytic results for the three-loop diagrams involving two different massive quark flavours contributing to the ρ parameter in the Standard Model. We find that the results involve exactly the same class of functions that appears in the well-known sunrise and banana graphs, namely elliptic polylogarithms and iterated integrals of modular forms. Using recent developments in the understanding of these functions, we analytically continue all the iterated integrals of modular forms to all regions of the parameter space, and in each region we obtain manifestly real and fast-converging series expansions for these functions.
id cern-2705804
institution Organización Europea para la Investigación Nuclear
language eng
publishDate 2019
record_format invenio
spelling cern-27058042023-10-04T07:34:02Zdoi:10.1007/JHEP02(2020)050http://cds.cern.ch/record/2705804engAbreu, SamuelBecchetti, MatteoDuhr, ClaudeMarzucca, RobinThree-loop contributions to the $\rho$ parameter and iterated integrals of modular formshep-thParticle Physics - TheoryWe compute fully analytic results for the three-loop diagrams involving two different massive quark flavours contributing to the ρ parameter in the Standard Model. We find that the results involve exactly the same class of functions that appears in the well-known sunrise and banana graphs, namely elliptic polylogarithms and iterated integrals of modular forms. Using recent developments in the understanding of these functions, we analytically continue all the iterated integrals of modular forms to all regions of the parameter space, and in each region we obtain manifestly real and fast-converging series expansions for these functions.We compute fully analytic results for the three-loop diagrams involving two different massive quark flavours contributing to the $\rho$ parameter in the Standard Model. We find that the results involve exactly the same class of functions that appears in the well-known sunrise and banana graphs, namely elliptic polylogarithms and iterated integrals of modular forms. Using recent developments in the understanding of these functions, we analytically continue all the iterated integrals of modular forms to all regions of the parameter space, and in each region we obtain manifestly real and fast-converging series expansions for these functions.arXiv:1912.02747CERN-TH-2019-210CP3-19-53IPPP/19/90oai:cds.cern.ch:27058042019-12-05
spellingShingle hep-th
Particle Physics - Theory
Abreu, Samuel
Becchetti, Matteo
Duhr, Claude
Marzucca, Robin
Three-loop contributions to the $\rho$ parameter and iterated integrals of modular forms
title Three-loop contributions to the $\rho$ parameter and iterated integrals of modular forms
title_full Three-loop contributions to the $\rho$ parameter and iterated integrals of modular forms
title_fullStr Three-loop contributions to the $\rho$ parameter and iterated integrals of modular forms
title_full_unstemmed Three-loop contributions to the $\rho$ parameter and iterated integrals of modular forms
title_short Three-loop contributions to the $\rho$ parameter and iterated integrals of modular forms
title_sort three-loop contributions to the $\rho$ parameter and iterated integrals of modular forms
topic hep-th
Particle Physics - Theory
url https://dx.doi.org/10.1007/JHEP02(2020)050
http://cds.cern.ch/record/2705804
work_keys_str_mv AT abreusamuel threeloopcontributionstotherhoparameteranditeratedintegralsofmodularforms
AT becchettimatteo threeloopcontributionstotherhoparameteranditeratedintegralsofmodularforms
AT duhrclaude threeloopcontributionstotherhoparameteranditeratedintegralsofmodularforms
AT marzuccarobin threeloopcontributionstotherhoparameteranditeratedintegralsofmodularforms