Cargando…
Calorimetry with Deep Learning: Particle Simulation and Reconstruction for Collider Physics
Using detailed simulations of calorimeter showers as training data, we investigate the use of deep learning algorithms for the simulation and reconstruction of single isolated particles produced in high-energy physics collisions. We train neural networks on single-particle shower data at the calorim...
Autores principales: | Belayneh, Dawit, Carminati, Federico, Farbin, Amir, Hooberman, Benjamin, Khattak, Gulrukh, Liu, Miaoyuan, Liu, Junze, Olivito, Dominick, Barin Pacela, Vitória, Pierini, Maurizio, Schwing, Alexander, Spiropulu, Maria, Vallecorsa, Sofia, Vlimant, Jean-Roch, Wei, Wei, Zhang, Matt |
---|---|
Lenguaje: | eng |
Publicado: |
2019
|
Materias: | |
Acceso en línea: | https://dx.doi.org/10.1140/epjc/s10052-020-8251-9 http://cds.cern.ch/record/2706000 |
Ejemplares similares
-
Towards Optimal Compression: Joint Pruning and Quantization
por: Zandonati, Ben, et al.
Publicado: (2023) -
Technical Report of Participation in Higgs Boson Machine Learning Challenge
por: Ahmad, S. Raza
Publicado: (2015) -
Automated visual inspection of CMS HGCAL silicon sensor surface using an ensemble of a deep convolutional autoencoder and classifier
por: Grönroos, Sonja, et al.
Publicado: (2023) -
Open-source FPGA-ML codesign for the MLPerf Tiny Benchmark
por: Borras, Hendrik, et al.
Publicado: (2022) -
Arhuaco: Deep Learning and Isolation Based Security for Distributed High-Throughput Computing
por: Gomez Ramirez, A., et al.
Publicado: (2018)