Cargando…
Instantons and Hilbert Functions
We study superpotentials from worldsheet instantons in heterotic Calabi-Yau compactifications for vector bundles constructed from line bundle sums, monads, and extensions. Within a certain class of manifolds and for certain second homology classes, we derive simple necessary conditions for a nonvani...
Autores principales: | , , , |
---|---|
Lenguaje: | eng |
Publicado: |
2019
|
Materias: | |
Acceso en línea: | https://dx.doi.org/10.1103/PhysRevD.102.026019 http://cds.cern.ch/record/2706269 |
Sumario: | We study superpotentials from worldsheet instantons in heterotic Calabi-Yau compactifications for vector bundles constructed from line bundle sums, monads, and extensions. Within a certain class of manifolds and for certain second homology classes, we derive simple necessary conditions for a nonvanishing instanton superpotential. These show that nonvanishing instanton superpotentials are rare and require a specific pattern for the bundle construction. For the class of monad and extension bundles with this pattern, we derive a sufficient criterion for nonvanishing instanton superpotentials based on an affine Hilbert function. This criterion shows that a nonzero instanton superpotential is common within this class. The criterion can be checked using commutative algebra methods only and depends on the topological data defining the Calabi-Yau X and the vector bundle V. |
---|