Cargando…
Machine learning for early fault detection in accelerator systems
With the development of systems based on a combination of mechanics, electronics and – more and more - software components, increasing system complexity is a de facto trend in the engineering world. Particle accelerators make no exception to this paradigm. The continuous push for higher energies dri...
Autores principales: | Apollonio, Andrea, Cartier-Michaud, Thomas, Felsberger, Lukas, Mueller, Andreas, Todd, Benjamin |
---|---|
Lenguaje: | eng |
Publicado: |
2020
|
Materias: | |
Acceso en línea: | http://cds.cern.ch/record/2706483 |
Ejemplares similares
-
Machine learning for early fault detection in accelerator systems
por: Apollonio, Andrea, et al.
Publicado: (2020) -
Explainable Deep Learning for Fault Prognostics in Complex Systems: A Particle Accelerator Use-Case
por: Felsberger, Lukas, et al.
Publicado: (2020) -
Machine Learning Models for Breakdown Prediction in RF Cavities for Accelerators
por: Obermair, Christoph, et al.
Publicado: (2021) -
Availability Modeling of the Solid-State Power Amplifiers for the CERN SPS RF Upgrade
por: Felsberger, Lukas, et al.
Publicado: (2021) -
Data-Driven Risk Matrices for CERN’s Accelerators
por: Cartier-Michaud, Thomas, et al.
Publicado: (2021)