Cargando…

PHYSTAT Seminar: Accelerating Bayesian Computation: Parallelizing Markov Chain Monte Carlo

<!--HTML--><div> <div> <div> <p>A full-fledged Bayesian computation requries evaluation of the posterior probability density in the complete parameter space. &nbsp;This can become very time consuming using commonly used algorithms such as Markov Chain Monte Carlos....

Descripción completa

Detalles Bibliográficos
Autor principal: Caldwell, Allen
Lenguaje:eng
Publicado: 2020
Materias:
Acceso en línea:http://cds.cern.ch/record/2706495
_version_ 1780964873452126208
author Caldwell, Allen
author_facet Caldwell, Allen
author_sort Caldwell, Allen
collection CERN
description <!--HTML--><div> <div> <div> <p>A full-fledged Bayesian computation requries evaluation of the posterior probability density in the complete parameter space. &nbsp;This can become very time consuming using commonly used algorithms such as Markov Chain Monte Carlos. &nbsp;We present ideas on the parallelization of the Markov Chain Monte Carlo approach via multi-proposal generation and via parameter space partitioning. For the former approach, recent developments in weighted sample generation are described and initial results presented. &nbsp;For massive parallelization via parameter space partitioning, the calculation of the marginal likelihood (evidence) is necessary and we solve this task with the Adaptive Harmonic Mean Integration (AHMI) algorithm. We describe the algorithm and it’s mathematical properties, and report the results using it on multiple test cases.&nbsp;</p> </div> </div> </div>
id cern-2706495
institution Organización Europea para la Investigación Nuclear
language eng
publishDate 2020
record_format invenio
spelling cern-27064952022-11-02T22:31:43Zhttp://cds.cern.ch/record/2706495engCaldwell, AllenPHYSTAT Seminar: Accelerating Bayesian Computation: Parallelizing Markov Chain Monte CarloPHYSTAT Seminar: Accelerating Bayesian Computation: Parallelizing Markov Chain Monte CarloEP-IT Data science seminars<!--HTML--><div> <div> <div> <p>A full-fledged Bayesian computation requries evaluation of the posterior probability density in the complete parameter space. &nbsp;This can become very time consuming using commonly used algorithms such as Markov Chain Monte Carlos. &nbsp;We present ideas on the parallelization of the Markov Chain Monte Carlo approach via multi-proposal generation and via parameter space partitioning. For the former approach, recent developments in weighted sample generation are described and initial results presented. &nbsp;For massive parallelization via parameter space partitioning, the calculation of the marginal likelihood (evidence) is necessary and we solve this task with the Adaptive Harmonic Mean Integration (AHMI) algorithm. We describe the algorithm and it’s mathematical properties, and report the results using it on multiple test cases.&nbsp;</p> </div> </div> </div>oai:cds.cern.ch:27064952020
spellingShingle EP-IT Data science seminars
Caldwell, Allen
PHYSTAT Seminar: Accelerating Bayesian Computation: Parallelizing Markov Chain Monte Carlo
title PHYSTAT Seminar: Accelerating Bayesian Computation: Parallelizing Markov Chain Monte Carlo
title_full PHYSTAT Seminar: Accelerating Bayesian Computation: Parallelizing Markov Chain Monte Carlo
title_fullStr PHYSTAT Seminar: Accelerating Bayesian Computation: Parallelizing Markov Chain Monte Carlo
title_full_unstemmed PHYSTAT Seminar: Accelerating Bayesian Computation: Parallelizing Markov Chain Monte Carlo
title_short PHYSTAT Seminar: Accelerating Bayesian Computation: Parallelizing Markov Chain Monte Carlo
title_sort phystat seminar: accelerating bayesian computation: parallelizing markov chain monte carlo
topic EP-IT Data science seminars
url http://cds.cern.ch/record/2706495
work_keys_str_mv AT caldwellallen phystatseminaracceleratingbayesiancomputationparallelizingmarkovchainmontecarlo