Cargando…
Learning Multivariate New Physics
We discuss a method that employs a multilayer perceptron to detect deviations from a reference model in large multivariate datasets. Our data analysis strategy does not rely on any prior assumption on the nature of the deviation. It is designed to be sensitive to small discrepancies that arise in da...
Autores principales: | D'Agnolo, Raffaele Tito, Grosso, Gaia, Pierini, Maurizio, Wulzer, Andrea, Zanetti, Marco |
---|---|
Lenguaje: | eng |
Publicado: |
2019
|
Materias: | |
Acceso en línea: | https://dx.doi.org/10.1140/epjc/s10052-021-08853-y http://cds.cern.ch/record/2706696 |
Ejemplares similares
-
Learning New Physics from an Imperfect Machine
por: d'Agnolo, Raffaele Tito, et al.
Publicado: (2021) -
Learning New Physics from a Machine
por: D'Agnolo, Raffaele Tito, et al.
Publicado: (2018) -
Learning new physics efficiently with nonparametric methods
por: Letizia, Marco, et al.
Publicado: (2022) -
Learning new physics from an imperfect machine
por: D’Agnolo, Raffaele Tito, et al.
Publicado: (2022) -
A fast and flexible machine learning approach to data quality monitoring
por: Grosso, Gaia, et al.
Publicado: (2023)