Cargando…
The dual of l∞(X,L,λ), finitely additive measures and weak convergence: a primer
In measure theory, a familiar representation theorem due to F. Riesz identifies the dual space Lp(X,L,λ)* with Lq(X,L,λ), where 1/p+1/q=1, as long as 1 ≤ p<∞. However, L∞(X,L,λ)* cannot be similarly described, and is instead represented as a class of finitely additive measures. This book provides...
Autor principal: | Toland, John |
---|---|
Lenguaje: | eng |
Publicado: |
Springer
2020
|
Materias: | |
Acceso en línea: | https://dx.doi.org/10.1007/978-3-030-34732-1 http://cds.cern.ch/record/2706778 |
Ejemplares similares
-
Weak convergence of measures
por: Bogachev, Vladimir I
Publicado: (2018) -
Weak convergence of measures
por: Bergström, Harald, et al.
Publicado: (1982) -
Weak convergence of financial markets
por: Prigent, Jean-Luc
Publicado: (2003) -
Weak convergence and empirical processes: with applications to statistics
por: Vaart, Aad W, et al.
Publicado: (1996) -
Weak convergence methods for semilinear elliptic equations
por: Chabrowski, Jan
Publicado: (1999)