Cargando…
Convolutional neural networks with event images for pileup mitigation
The addition of multiple, nearly simultaneous proton proton collisions to hard-scatter collisions (in-time pileup) is a significant challenge for most physics analyses at the LHC. Many techniques have been proposed to mitigate the impact of pileup on jets and other reconstructed objects. This study...
Autores principales: | Brickwedde, Bernard, Nachman, Benjamin Philip |
---|---|
Lenguaje: | eng |
Publicado: |
2020
|
Materias: | |
Acceso en línea: | http://cds.cern.ch/record/2707228 |
Ejemplares similares
-
Convolutional Neural Networks with Event Images for Pileup Mitigation with the ATLAS Detector
por: The ATLAS collaboration
Publicado: (2019) -
Pileup Mitigation
por: Roloff, Jennifer, et al.
Publicado: (2017) -
Pileup Mitigation Techniques
por: Klein, Matthew Henry
Publicado: (2016) -
Pileup Mitigation at the HL-LHC
por: Wells, Pippa
Publicado: (2014) -
Pileup mitigation at the Large Hadron Collider with Graph Neural Networks
por: Arjona Martínez, J., et al.
Publicado: (2018)