Cargando…
Identification of highly Lorentz-boosted heavy particles using graph neural networks and new mass decorrelation techniques
This note presents several new developments on machine learning (ML)-based identification of highly Lorentz-boosted heavy particles using jet substructure in CMS and their performance with the CMS Phase 1 detector. A new algorithm based on ParticleNet, a graph neural network using an unordered set o...
Autor principal: | CMS Collaboration |
---|---|
Lenguaje: | eng |
Publicado: |
2020
|
Materias: | |
Acceso en línea: | http://cds.cern.ch/record/2707946 |
Ejemplares similares
-
Mass regression of highly-boosted jets using graph neural networks
por: CMS Collaboration
Publicado: (2021) -
Calibration of the mass-decorrelated ParticleNet tagger for boosted $\mathrm{b}\bar{\mathrm{b}}$ and $\mathrm{c}\bar{\mathrm{c}}$ jets using LHC Run 2 data
por: CMS Collaboration
Publicado: (2022) -
Boosted jet identification using particle candidates and deep neural networks
por: CMS Collaboration
Publicado: (2017) -
Mass-decorrelated Xbb Tagger using Adversarial Neural Network
por: Chen, Shihlung
Publicado: (2022) -
Performance of the mass-decorrelated DeepDoubleX classifier for double-b and double-c large-radius jets with the CMS detector
por: CMS Collaboration
Publicado: (2022)