Cargando…
Analytic Response Relativistic Coupled-Cluster Theory: The first application to indium isotope shifts
With increasing demand for accurate calculation of isotope shifts of atomic systems for fundamental and nuclear structure research, an analytic energy derivative approach is presented in the relativistic coupled-cluster theory framework to determine the atomic field shift and mass shift factors. Thi...
Autores principales: | , , , , , , , , , , , , , , , , , , |
---|---|
Lenguaje: | eng |
Publicado: |
2019
|
Materias: | |
Acceso en línea: | https://dx.doi.org/10.1088/1367-2630/ab66dd http://cds.cern.ch/record/2709380 |
_version_ | 1780965054495064064 |
---|---|
author | Sahoo, B.K. Vernon, A.R. Garcia Ruiz, R.F. Binnersley, C.L. Billowes, J. Bissell, M.L. Cocolios, T.E. Farooq-Smith, G.J. Flanagan, K.T. Gins, W. de Groote, R.P. Koszorus, A. Neyens, G. Lynch, K.M. Parnefjord-Gustafsson, F. Ricketts, C.M. Wendt, K.D.A. Wilkins, S.G. Yang, X.F. |
author_facet | Sahoo, B.K. Vernon, A.R. Garcia Ruiz, R.F. Binnersley, C.L. Billowes, J. Bissell, M.L. Cocolios, T.E. Farooq-Smith, G.J. Flanagan, K.T. Gins, W. de Groote, R.P. Koszorus, A. Neyens, G. Lynch, K.M. Parnefjord-Gustafsson, F. Ricketts, C.M. Wendt, K.D.A. Wilkins, S.G. Yang, X.F. |
author_sort | Sahoo, B.K. |
collection | CERN |
description | With increasing demand for accurate calculation of isotope shifts of atomic systems for fundamental and nuclear structure research, an analytic energy derivative approach is presented in the relativistic coupled-cluster theory framework to determine the atomic field shift and mass shift factors. This approach allows the determination of expectation values of atomic operators, overcoming fundamental problems that are present in existing atomic physics methods, i.e. it satisfies the Hellmann-Feynman theorem, does not involve any non-terminating series, and is free from choice of any perturbative parameter. As a proof of concept, the developed analytic response relativistic coupled-cluster theory has been applied to determine mass shift and field shift factors for different atomic states of indium. High-precision isotope-shift measurements of $^{104-127}$In were performed in the 246.8-nm (5p $^2$P$_{3/2}$ $\rightarrow$ 9s $^2$S$_{1/2}$) and 246.0-nm (5p $^2$P$_{1/2}$ $\rightarrow$ 8s $^2$S$_{1/2}$) transitions to test our theoretical results. An excellent agreement between the theoretical and measured values is found, which is known to be challenging in multi-electron atoms. The calculated atomic factors allowed an accurate determination of the nuclear charge radii of the ground and isomeric states of the $^{104-127}$In isotopes, providing an isotone-independent comparison of the absolute charge radii. |
id | cern-2709380 |
institution | Organización Europea para la Investigación Nuclear |
language | eng |
publishDate | 2019 |
record_format | invenio |
spelling | cern-27093802022-08-10T12:19:22Zdoi:10.1088/1367-2630/ab66ddhttp://cds.cern.ch/record/2709380engSahoo, B.K.Vernon, A.R.Garcia Ruiz, R.F.Binnersley, C.L.Billowes, J.Bissell, M.L.Cocolios, T.E.Farooq-Smith, G.J.Flanagan, K.T.Gins, W.de Groote, R.P.Koszorus, A.Neyens, G.Lynch, K.M.Parnefjord-Gustafsson, F.Ricketts, C.M.Wendt, K.D.A.Wilkins, S.G.Yang, X.F.Analytic Response Relativistic Coupled-Cluster Theory: The first application to indium isotope shiftsnucl-exNuclear Physics - Experimentphysics.atom-phOther Fields of PhysicsWith increasing demand for accurate calculation of isotope shifts of atomic systems for fundamental and nuclear structure research, an analytic energy derivative approach is presented in the relativistic coupled-cluster theory framework to determine the atomic field shift and mass shift factors. This approach allows the determination of expectation values of atomic operators, overcoming fundamental problems that are present in existing atomic physics methods, i.e. it satisfies the Hellmann-Feynman theorem, does not involve any non-terminating series, and is free from choice of any perturbative parameter. As a proof of concept, the developed analytic response relativistic coupled-cluster theory has been applied to determine mass shift and field shift factors for different atomic states of indium. High-precision isotope-shift measurements of $^{104-127}$In were performed in the 246.8-nm (5p $^2$P$_{3/2}$ $\rightarrow$ 9s $^2$S$_{1/2}$) and 246.0-nm (5p $^2$P$_{1/2}$ $\rightarrow$ 8s $^2$S$_{1/2}$) transitions to test our theoretical results. An excellent agreement between the theoretical and measured values is found, which is known to be challenging in multi-electron atoms. The calculated atomic factors allowed an accurate determination of the nuclear charge radii of the ground and isomeric states of the $^{104-127}$In isotopes, providing an isotone-independent comparison of the absolute charge radii.With increasing demand for accurate calculation of isotope shifts of atomic systems for fundamental and nuclear structure research, an analytic energy derivative approach is presented in the relativistic coupled-cluster theory framework to determine the atomic field shift and mass shift factors. This approach allows the determination of expectation values of atomic operators, overcoming fundamental problems that are present in existing atomic physics methods, i.e. it satisfies the Hellmann-Feynman theorem, does not involve any non-terminating series, and is free from choice of any perturbative parameter. As a proof of concept, the developed analytic response relativistic coupled-cluster theory has been applied to determine mass shift and field shift factors for different atomic states of indium. High-precision isotope-shift measurements of $^{104-127}$In were performed in the 246.8-nm (5p $^2$P$_{3/2}$ $\rightarrow$ 9s $^2$S$_{1/2}$) and 246.0-nm (5p $^2$P$_{1/2}$ $\rightarrow$ 8s $^2$S$_{1/2}$) transitions to test our theoretical results. An excellent agreement between the theoretical and measured values is found, which is known to be challenging in multi-electron atoms. The calculated atomic factors allowed an accurate determination of the nuclear charge radii of the ground and isomeric states of the $^{104-127}$In isotopes, providing an isotone-independent comparison of the absolute charge radii.arXiv:1911.02812oai:cds.cern.ch:27093802019-11-07 |
spellingShingle | nucl-ex Nuclear Physics - Experiment physics.atom-ph Other Fields of Physics Sahoo, B.K. Vernon, A.R. Garcia Ruiz, R.F. Binnersley, C.L. Billowes, J. Bissell, M.L. Cocolios, T.E. Farooq-Smith, G.J. Flanagan, K.T. Gins, W. de Groote, R.P. Koszorus, A. Neyens, G. Lynch, K.M. Parnefjord-Gustafsson, F. Ricketts, C.M. Wendt, K.D.A. Wilkins, S.G. Yang, X.F. Analytic Response Relativistic Coupled-Cluster Theory: The first application to indium isotope shifts |
title | Analytic Response Relativistic Coupled-Cluster Theory: The first application to indium isotope shifts |
title_full | Analytic Response Relativistic Coupled-Cluster Theory: The first application to indium isotope shifts |
title_fullStr | Analytic Response Relativistic Coupled-Cluster Theory: The first application to indium isotope shifts |
title_full_unstemmed | Analytic Response Relativistic Coupled-Cluster Theory: The first application to indium isotope shifts |
title_short | Analytic Response Relativistic Coupled-Cluster Theory: The first application to indium isotope shifts |
title_sort | analytic response relativistic coupled-cluster theory: the first application to indium isotope shifts |
topic | nucl-ex Nuclear Physics - Experiment physics.atom-ph Other Fields of Physics |
url | https://dx.doi.org/10.1088/1367-2630/ab66dd http://cds.cern.ch/record/2709380 |
work_keys_str_mv | AT sahoobk analyticresponserelativisticcoupledclustertheorythefirstapplicationtoindiumisotopeshifts AT vernonar analyticresponserelativisticcoupledclustertheorythefirstapplicationtoindiumisotopeshifts AT garciaruizrf analyticresponserelativisticcoupledclustertheorythefirstapplicationtoindiumisotopeshifts AT binnersleycl analyticresponserelativisticcoupledclustertheorythefirstapplicationtoindiumisotopeshifts AT billowesj analyticresponserelativisticcoupledclustertheorythefirstapplicationtoindiumisotopeshifts AT bissellml analyticresponserelativisticcoupledclustertheorythefirstapplicationtoindiumisotopeshifts AT cocolioste analyticresponserelativisticcoupledclustertheorythefirstapplicationtoindiumisotopeshifts AT farooqsmithgj analyticresponserelativisticcoupledclustertheorythefirstapplicationtoindiumisotopeshifts AT flanagankt analyticresponserelativisticcoupledclustertheorythefirstapplicationtoindiumisotopeshifts AT ginsw analyticresponserelativisticcoupledclustertheorythefirstapplicationtoindiumisotopeshifts AT degrooterp analyticresponserelativisticcoupledclustertheorythefirstapplicationtoindiumisotopeshifts AT koszorusa analyticresponserelativisticcoupledclustertheorythefirstapplicationtoindiumisotopeshifts AT neyensg analyticresponserelativisticcoupledclustertheorythefirstapplicationtoindiumisotopeshifts AT lynchkm analyticresponserelativisticcoupledclustertheorythefirstapplicationtoindiumisotopeshifts AT parnefjordgustafssonf analyticresponserelativisticcoupledclustertheorythefirstapplicationtoindiumisotopeshifts AT rickettscm analyticresponserelativisticcoupledclustertheorythefirstapplicationtoindiumisotopeshifts AT wendtkda analyticresponserelativisticcoupledclustertheorythefirstapplicationtoindiumisotopeshifts AT wilkinssg analyticresponserelativisticcoupledclustertheorythefirstapplicationtoindiumisotopeshifts AT yangxf analyticresponserelativisticcoupledclustertheorythefirstapplicationtoindiumisotopeshifts |