Cargando…

Analytic Response Relativistic Coupled-Cluster Theory: The first application to indium isotope shifts

With increasing demand for accurate calculation of isotope shifts of atomic systems for fundamental and nuclear structure research, an analytic energy derivative approach is presented in the relativistic coupled-cluster theory framework to determine the atomic field shift and mass shift factors. Thi...

Descripción completa

Detalles Bibliográficos
Autores principales: Sahoo, B.K., Vernon, A.R., Garcia Ruiz, R.F., Binnersley, C.L., Billowes, J., Bissell, M.L., Cocolios, T.E., Farooq-Smith, G.J., Flanagan, K.T., Gins, W., de Groote, R.P., Koszorus, A., Neyens, G., Lynch, K.M., Parnefjord-Gustafsson, F., Ricketts, C.M., Wendt, K.D.A., Wilkins, S.G., Yang, X.F.
Lenguaje:eng
Publicado: 2019
Materias:
Acceso en línea:https://dx.doi.org/10.1088/1367-2630/ab66dd
http://cds.cern.ch/record/2709380
_version_ 1780965054495064064
author Sahoo, B.K.
Vernon, A.R.
Garcia Ruiz, R.F.
Binnersley, C.L.
Billowes, J.
Bissell, M.L.
Cocolios, T.E.
Farooq-Smith, G.J.
Flanagan, K.T.
Gins, W.
de Groote, R.P.
Koszorus, A.
Neyens, G.
Lynch, K.M.
Parnefjord-Gustafsson, F.
Ricketts, C.M.
Wendt, K.D.A.
Wilkins, S.G.
Yang, X.F.
author_facet Sahoo, B.K.
Vernon, A.R.
Garcia Ruiz, R.F.
Binnersley, C.L.
Billowes, J.
Bissell, M.L.
Cocolios, T.E.
Farooq-Smith, G.J.
Flanagan, K.T.
Gins, W.
de Groote, R.P.
Koszorus, A.
Neyens, G.
Lynch, K.M.
Parnefjord-Gustafsson, F.
Ricketts, C.M.
Wendt, K.D.A.
Wilkins, S.G.
Yang, X.F.
author_sort Sahoo, B.K.
collection CERN
description With increasing demand for accurate calculation of isotope shifts of atomic systems for fundamental and nuclear structure research, an analytic energy derivative approach is presented in the relativistic coupled-cluster theory framework to determine the atomic field shift and mass shift factors. This approach allows the determination of expectation values of atomic operators, overcoming fundamental problems that are present in existing atomic physics methods, i.e. it satisfies the Hellmann-Feynman theorem, does not involve any non-terminating series, and is free from choice of any perturbative parameter. As a proof of concept, the developed analytic response relativistic coupled-cluster theory has been applied to determine mass shift and field shift factors for different atomic states of indium. High-precision isotope-shift measurements of $^{104-127}$In were performed in the 246.8-nm (5p $^2$P$_{3/2}$ $\rightarrow$ 9s $^2$S$_{1/2}$) and 246.0-nm (5p $^2$P$_{1/2}$ $\rightarrow$ 8s $^2$S$_{1/2}$) transitions to test our theoretical results. An excellent agreement between the theoretical and measured values is found, which is known to be challenging in multi-electron atoms. The calculated atomic factors allowed an accurate determination of the nuclear charge radii of the ground and isomeric states of the $^{104-127}$In isotopes, providing an isotone-independent comparison of the absolute charge radii.
id cern-2709380
institution Organización Europea para la Investigación Nuclear
language eng
publishDate 2019
record_format invenio
spelling cern-27093802022-08-10T12:19:22Zdoi:10.1088/1367-2630/ab66ddhttp://cds.cern.ch/record/2709380engSahoo, B.K.Vernon, A.R.Garcia Ruiz, R.F.Binnersley, C.L.Billowes, J.Bissell, M.L.Cocolios, T.E.Farooq-Smith, G.J.Flanagan, K.T.Gins, W.de Groote, R.P.Koszorus, A.Neyens, G.Lynch, K.M.Parnefjord-Gustafsson, F.Ricketts, C.M.Wendt, K.D.A.Wilkins, S.G.Yang, X.F.Analytic Response Relativistic Coupled-Cluster Theory: The first application to indium isotope shiftsnucl-exNuclear Physics - Experimentphysics.atom-phOther Fields of PhysicsWith increasing demand for accurate calculation of isotope shifts of atomic systems for fundamental and nuclear structure research, an analytic energy derivative approach is presented in the relativistic coupled-cluster theory framework to determine the atomic field shift and mass shift factors. This approach allows the determination of expectation values of atomic operators, overcoming fundamental problems that are present in existing atomic physics methods, i.e. it satisfies the Hellmann-Feynman theorem, does not involve any non-terminating series, and is free from choice of any perturbative parameter. As a proof of concept, the developed analytic response relativistic coupled-cluster theory has been applied to determine mass shift and field shift factors for different atomic states of indium. High-precision isotope-shift measurements of $^{104-127}$In were performed in the 246.8-nm (5p $^2$P$_{3/2}$ $\rightarrow$ 9s $^2$S$_{1/2}$) and 246.0-nm (5p $^2$P$_{1/2}$ $\rightarrow$ 8s $^2$S$_{1/2}$) transitions to test our theoretical results. An excellent agreement between the theoretical and measured values is found, which is known to be challenging in multi-electron atoms. The calculated atomic factors allowed an accurate determination of the nuclear charge radii of the ground and isomeric states of the $^{104-127}$In isotopes, providing an isotone-independent comparison of the absolute charge radii.With increasing demand for accurate calculation of isotope shifts of atomic systems for fundamental and nuclear structure research, an analytic energy derivative approach is presented in the relativistic coupled-cluster theory framework to determine the atomic field shift and mass shift factors. This approach allows the determination of expectation values of atomic operators, overcoming fundamental problems that are present in existing atomic physics methods, i.e. it satisfies the Hellmann-Feynman theorem, does not involve any non-terminating series, and is free from choice of any perturbative parameter. As a proof of concept, the developed analytic response relativistic coupled-cluster theory has been applied to determine mass shift and field shift factors for different atomic states of indium. High-precision isotope-shift measurements of $^{104-127}$In were performed in the 246.8-nm (5p $^2$P$_{3/2}$ $\rightarrow$ 9s $^2$S$_{1/2}$) and 246.0-nm (5p $^2$P$_{1/2}$ $\rightarrow$ 8s $^2$S$_{1/2}$) transitions to test our theoretical results. An excellent agreement between the theoretical and measured values is found, which is known to be challenging in multi-electron atoms. The calculated atomic factors allowed an accurate determination of the nuclear charge radii of the ground and isomeric states of the $^{104-127}$In isotopes, providing an isotone-independent comparison of the absolute charge radii.arXiv:1911.02812oai:cds.cern.ch:27093802019-11-07
spellingShingle nucl-ex
Nuclear Physics - Experiment
physics.atom-ph
Other Fields of Physics
Sahoo, B.K.
Vernon, A.R.
Garcia Ruiz, R.F.
Binnersley, C.L.
Billowes, J.
Bissell, M.L.
Cocolios, T.E.
Farooq-Smith, G.J.
Flanagan, K.T.
Gins, W.
de Groote, R.P.
Koszorus, A.
Neyens, G.
Lynch, K.M.
Parnefjord-Gustafsson, F.
Ricketts, C.M.
Wendt, K.D.A.
Wilkins, S.G.
Yang, X.F.
Analytic Response Relativistic Coupled-Cluster Theory: The first application to indium isotope shifts
title Analytic Response Relativistic Coupled-Cluster Theory: The first application to indium isotope shifts
title_full Analytic Response Relativistic Coupled-Cluster Theory: The first application to indium isotope shifts
title_fullStr Analytic Response Relativistic Coupled-Cluster Theory: The first application to indium isotope shifts
title_full_unstemmed Analytic Response Relativistic Coupled-Cluster Theory: The first application to indium isotope shifts
title_short Analytic Response Relativistic Coupled-Cluster Theory: The first application to indium isotope shifts
title_sort analytic response relativistic coupled-cluster theory: the first application to indium isotope shifts
topic nucl-ex
Nuclear Physics - Experiment
physics.atom-ph
Other Fields of Physics
url https://dx.doi.org/10.1088/1367-2630/ab66dd
http://cds.cern.ch/record/2709380
work_keys_str_mv AT sahoobk analyticresponserelativisticcoupledclustertheorythefirstapplicationtoindiumisotopeshifts
AT vernonar analyticresponserelativisticcoupledclustertheorythefirstapplicationtoindiumisotopeshifts
AT garciaruizrf analyticresponserelativisticcoupledclustertheorythefirstapplicationtoindiumisotopeshifts
AT binnersleycl analyticresponserelativisticcoupledclustertheorythefirstapplicationtoindiumisotopeshifts
AT billowesj analyticresponserelativisticcoupledclustertheorythefirstapplicationtoindiumisotopeshifts
AT bissellml analyticresponserelativisticcoupledclustertheorythefirstapplicationtoindiumisotopeshifts
AT cocolioste analyticresponserelativisticcoupledclustertheorythefirstapplicationtoindiumisotopeshifts
AT farooqsmithgj analyticresponserelativisticcoupledclustertheorythefirstapplicationtoindiumisotopeshifts
AT flanagankt analyticresponserelativisticcoupledclustertheorythefirstapplicationtoindiumisotopeshifts
AT ginsw analyticresponserelativisticcoupledclustertheorythefirstapplicationtoindiumisotopeshifts
AT degrooterp analyticresponserelativisticcoupledclustertheorythefirstapplicationtoindiumisotopeshifts
AT koszorusa analyticresponserelativisticcoupledclustertheorythefirstapplicationtoindiumisotopeshifts
AT neyensg analyticresponserelativisticcoupledclustertheorythefirstapplicationtoindiumisotopeshifts
AT lynchkm analyticresponserelativisticcoupledclustertheorythefirstapplicationtoindiumisotopeshifts
AT parnefjordgustafssonf analyticresponserelativisticcoupledclustertheorythefirstapplicationtoindiumisotopeshifts
AT rickettscm analyticresponserelativisticcoupledclustertheorythefirstapplicationtoindiumisotopeshifts
AT wendtkda analyticresponserelativisticcoupledclustertheorythefirstapplicationtoindiumisotopeshifts
AT wilkinssg analyticresponserelativisticcoupledclustertheorythefirstapplicationtoindiumisotopeshifts
AT yangxf analyticresponserelativisticcoupledclustertheorythefirstapplicationtoindiumisotopeshifts