Cargando…

Variational Dropout Sparsification for Particle Identification speed-up

Accurate particle identification (PID) is one of the most important aspects of the LHCb experiment. Modern machine learning techniques such as neural networks (NNs) are efficiently applied to this problem and are integrated into the LHCb software. In this research, we discuss novel applications of n...

Descripción completa

Detalles Bibliográficos
Autores principales: Ryzhikov, Artem, Derkach, Denis, Hushchyn, Mikhail
Lenguaje:eng
Publicado: 2020
Materias:
Acceso en línea:https://dx.doi.org/10.1088/1742-6596/1525/1/012099
http://cds.cern.ch/record/2709467
Descripción
Sumario:Accurate particle identification (PID) is one of the most important aspects of the LHCb experiment. Modern machine learning techniques such as neural networks (NNs) are efficiently applied to this problem and are integrated into the LHCb software. In this research, we discuss novel applications of neural network speed-up techniques to achieve faster PID in LHC upgrade conditions. We show that the best results are obtained using variational dropout sparsification, which provides a prediction (feedforward pass) speed increase of up to a factor of sixteen even when compared to a model with shallow networks.