Cargando…
Variational Dropout Sparsification for Particle Identification speed-up
Accurate particle identification (PID) is one of the most important aspects of the LHCb experiment. Modern machine learning techniques such as neural networks (NNs) are efficiently applied to this problem and are integrated into the LHCb software. In this research, we discuss novel applications of n...
Autores principales: | Ryzhikov, Artem, Derkach, Denis, Hushchyn, Mikhail |
---|---|
Lenguaje: | eng |
Publicado: |
2020
|
Materias: | |
Acceso en línea: | https://dx.doi.org/10.1088/1742-6596/1525/1/012099 http://cds.cern.ch/record/2709467 |
Ejemplares similares
-
Variational Dropout Sparsification for Particle Identification speed-up
por: Ryzhikov, Artem
Publicado: (2019) -
Towards Optimal Compression: Joint Pruning and Quantization
por: Zandonati, Ben, et al.
Publicado: (2023) -
Technical Report of Participation in Higgs Boson Machine Learning Challenge
por: Ahmad, S. Raza
Publicado: (2015) -
Hyperparameter optimization, quantum-assisted model performance prediction, and benchmarking of AI-based High Energy Physics workloads using HPC
por: Wulff, Eric, et al.
Publicado: (2023) -
Generative Models for Fast Calorimeter Simulation: the LHCb case
por: Chekalina, Viktoria, et al.
Publicado: (2019)