Cargando…
Fast and resource-efficient Deep Neural Network on FPGA for the Phase-II Level-0 muon barrel trigger of the ATLAS experiment
Proceedings of parallel talk at CHEP 2019. The Level-0 muon trigger system of the ATLAS experiment will undergo a full upgrade for HL-LHC to stand the challenging requirements imposed by the increase in instantaneous luminosity. The upgraded trigger system will send raw hit data to off-detector proc...
Autor principal: | Giagu, Stefano |
---|---|
Lenguaje: | eng |
Publicado: |
2020
|
Materias: | |
Acceso en línea: | https://dx.doi.org/10.1051/epjconf/202024501021 http://cds.cern.ch/record/2709652 |
Ejemplares similares
-
Fast and Resource efficient Depp NN on FPGAs for the Phase-II L0 Muon Barrel Trigger of the ATLAS experiment
por: Giagu, Stefano, et al.
Publicado: (2019) -
Fast inference on FPGA for the ATLAS Muon Trigger
por: Carnesale, Maria
Publicado: (2023) -
Development of FPGA-based neural network regression models for the ATLAS Phase-II barrel muon trigger upgrade
por: Ospanov, Rustem
Publicado: (2021) -
Fast Deep Learning on FPGAs for the Phase-II L0 Muon Barrel Trigger of the ATLAS Experiment
por: Francescato, Simone
Publicado: (2019) -
Fast Deep Learning on FPGAs for the Phase-II L0 Muon Barrel Trigger of the ATLAS Experiment
por: Sabetta, Luigi
Publicado: (2019)