Cargando…
Beyond the Starobinsky model for inflation
We single out the Starobinsky model and its extensions among generic <math altimg="si1.svg"><mi>f</mi><mo stretchy="false">(</mo><mi>R</mi><mo stretchy="false">)</mo></math> gravity as attractors at large field...
Autores principales: | , , |
---|---|
Lenguaje: | eng |
Publicado: |
2020
|
Materias: | |
Acceso en línea: | https://dx.doi.org/10.1016/j.physletb.2020.135453 http://cds.cern.ch/record/2710474 |
_version_ | 1780965114040549376 |
---|---|
author | Cheong, Dhong Yeon Lee, Hyun Min Park, Seong Chan |
author_facet | Cheong, Dhong Yeon Lee, Hyun Min Park, Seong Chan |
author_sort | Cheong, Dhong Yeon |
collection | CERN |
description | We single out the Starobinsky model and its extensions among generic <math altimg="si1.svg"><mi>f</mi><mo stretchy="false">(</mo><mi>R</mi><mo stretchy="false">)</mo></math> gravity as attractors at large field values for chaotic inflation. Treating a <math altimg="si2.svg"><msup><mrow><mi>R</mi></mrow><mrow><mn>3</mn></mrow></msup></math> curvature term as a perturbation of the Starobinsky model, we impose the phenomenological bounds on the additional term satisfying the successful inflationary predictions. We find that the scalar spectral index can vary in both the red or blue tilted direction, depending on the sign of the coefficient of the <math altimg="si2.svg"><msup><mrow><mi>R</mi></mrow><mrow><mn>3</mn></mrow></msup></math> term, whereas the tensor-to-scalar ratio is less affected in the Planck-compatible region. We also discuss the role of higher order curvature term for stability and the reheating dynamics for the unambiguous prediction for the number of efoldings up to the <math altimg="si2.svg"><msup><mrow><mi>R</mi></mrow><mrow><mn>3</mn></mrow></msup></math> term. |
id | cern-2710474 |
institution | Organización Europea para la Investigación Nuclear |
language | eng |
publishDate | 2020 |
record_format | invenio |
spelling | cern-27104742023-10-04T07:35:18Zdoi:10.1016/j.physletb.2020.135453http://cds.cern.ch/record/2710474engCheong, Dhong YeonLee, Hyun MinPark, Seong ChanBeyond the Starobinsky model for inflationhep-thParticle Physics - Theorygr-qcGeneral Relativity and Cosmologyhep-phParticle Physics - PhenomenologyWe single out the Starobinsky model and its extensions among generic <math altimg="si1.svg"><mi>f</mi><mo stretchy="false">(</mo><mi>R</mi><mo stretchy="false">)</mo></math> gravity as attractors at large field values for chaotic inflation. Treating a <math altimg="si2.svg"><msup><mrow><mi>R</mi></mrow><mrow><mn>3</mn></mrow></msup></math> curvature term as a perturbation of the Starobinsky model, we impose the phenomenological bounds on the additional term satisfying the successful inflationary predictions. We find that the scalar spectral index can vary in both the red or blue tilted direction, depending on the sign of the coefficient of the <math altimg="si2.svg"><msup><mrow><mi>R</mi></mrow><mrow><mn>3</mn></mrow></msup></math> term, whereas the tensor-to-scalar ratio is less affected in the Planck-compatible region. We also discuss the role of higher order curvature term for stability and the reheating dynamics for the unambiguous prediction for the number of efoldings up to the <math altimg="si2.svg"><msup><mrow><mi>R</mi></mrow><mrow><mn>3</mn></mrow></msup></math> term.We single out the Starobinsky model and its extensions among generic f(R) gravity as attractors at large field values for chaotic inflation. Treating a R3 curvature term as a perturbation of the Starobinsky model, we impose the phenomenological bounds on the additional term satisfying the successful inflationary predictions. We find that the scalar spectral index can vary in both the red or blue tilted direction, depending on the sign of the coefficient of the R3 term, whereas the tensor-to-scalar ratio is less affected in the Planck-compatible region. We also discuss the role of higher order curvature term for stability and the reheating dynamics for the unambiguous prediction for the number of efoldings up to the R3 term.We single out the Starobinsky model and its extensions among generic $f(R)$ gravity as attractors at large field values for chaotic inflation. Treating a $R^3$ curvature term as a perturbation of the Starobinsky model, we impose the phenomenological bounds on the additional term satisfying the successful inflationary predictions. We find that the scalar spectral index can vary in both the red or blue tilted direction, depending on the sign of the coefficient of the $R^3$ term, whereas the tensor-to-scalar ratio is less affected in the Planck-compatible region. We also discuss the role of higher order curvature term for stability and the reheating dynamics for the unambiguous prediction for the number of efoldings up to the $R^3$ term.arXiv:2002.07981YHEP-COS20-04CAU-THEP-2020-02CERN-TH-2020-022oai:cds.cern.ch:27104742020-02-18 |
spellingShingle | hep-th Particle Physics - Theory gr-qc General Relativity and Cosmology hep-ph Particle Physics - Phenomenology Cheong, Dhong Yeon Lee, Hyun Min Park, Seong Chan Beyond the Starobinsky model for inflation |
title | Beyond the Starobinsky model for inflation |
title_full | Beyond the Starobinsky model for inflation |
title_fullStr | Beyond the Starobinsky model for inflation |
title_full_unstemmed | Beyond the Starobinsky model for inflation |
title_short | Beyond the Starobinsky model for inflation |
title_sort | beyond the starobinsky model for inflation |
topic | hep-th Particle Physics - Theory gr-qc General Relativity and Cosmology hep-ph Particle Physics - Phenomenology |
url | https://dx.doi.org/10.1016/j.physletb.2020.135453 http://cds.cern.ch/record/2710474 |
work_keys_str_mv | AT cheongdhongyeon beyondthestarobinskymodelforinflation AT leehyunmin beyondthestarobinskymodelforinflation AT parkseongchan beyondthestarobinskymodelforinflation |