Cargando…
Extension of Signal Monitoring Applications with Machine Learning
The Large Hadron Colider (LHC) is the world’s largest particle accelerator. It is 27-km long and contains a wide range of superconducting circuits for controlling the shape and trajectory of particles. During operation, the nominal designed current (for 7 TeV) in the main bending dipole circuit is 1...
Autor principal: | Obermair, Christoph |
---|---|
Lenguaje: | eng |
Publicado: |
Obermair Christoph
2020
|
Materias: | |
Acceso en línea: | http://cds.cern.ch/record/2711628 |
Ejemplares similares
-
Machine Learning with a Hybrid Model for Monitoring of the Protection Systems of the LHC
por: Obermair, Christoph, et al.
Publicado: (2021) -
Machine Learning Models for Breakdown Prediction in RF Cavities for Accelerators
por: Obermair, Christoph, et al.
Publicado: (2021) -
Signal monitoring for the LHC - Development of an application for analyzing the main quadrupole busbar resistance
por: Obermair, Christoph
Publicado: (2018) -
Secondary Emission Monitor Simulation, Measurements and Machine Learning Application Studies for CERN Fixed Target Beamlines
por: Parsons França, Luana, et al.
Publicado: (2022) -
Application of Machine Learning to Beam Diagnostics
por: Fol, Elena, et al.
Publicado: (2019)