Cargando…
Object condensation: one-stage grid-free multi-object reconstruction in physics detectors, graph and image data
High-energy physics detectors, images, and point clouds share many similarities in terms of object detection. However, while detecting an unknown number of objects in an image is well established in computer vision, even machine learning assisted object reconstruction algorithms in particle physics...
Autor principal: | Kieseler, Jan |
---|---|
Lenguaje: | eng |
Publicado: |
2020
|
Materias: | |
Acceso en línea: | https://dx.doi.org/10.1140/epjc/s10052-020-08461-2 http://cds.cern.ch/record/2711960 |
Ejemplares similares
-
End-to-End Physics Event Classification with the CMS Open Data: Applying Image-based Deep Learning on Detector Data to Directly Classify Collision Events at the LHC
por: Andrews, M., et al.
Publicado: (2018) -
Machine Learning methods for simulating particle response in the Zero Degree Calorimeter at the ALICE experiment, CERN
por: Dubiński, Jan, et al.
Publicado: (2023) -
Numerical optimization for Artificial Retina Algorithm
por: Borisyak, Maxim, et al.
Publicado: (2017) -
Automatic heterogeneous quantization of deep neural networks for low-latency inference on the edge for particle detectors
por: Coelho, Claudionor N., et al.
Publicado: (2020) -
End-to-End Jet Classification of Quarks and Gluons with the CMS Open Data
por: Andrews, M., et al.
Publicado: (2019)