Cargando…
Reducing the dependence of the neural network function to systematic uncertainties in the input space
Applications of neural networks to data analyses in natural sciences are complicated by the fact that many inputs are subject to systematic uncertainties. To control the dependence of the neural network function to variations of the input space within these systematic uncertainties, several methods...
Autores principales: | Wunsch, Stefan, Jörger, Simon, Wolf, Roger, Quast, Günter |
---|---|
Lenguaje: | eng |
Publicado: |
2019
|
Materias: | |
Acceso en línea: | https://dx.doi.org/10.1007/s41781-020-00037-9 http://cds.cern.ch/record/2712045 |
Ejemplares similares
-
Identifying the relevant dependencies of the neural network response on characteristics of the input space
por: Wunsch, Stefan, et al.
Publicado: (2018) -
Optimal statistical inference in the presence of systematic uncertainties using neural network optimization based on binned Poisson likelihoods with nuisance parameters
por: Wunsch, Stefan, et al.
Publicado: (2020) -
Limits, discovery and cut optimization for a Poisson process with uncertainty in background and signal efficiency: TRolke 2.0
por: Lundberg, J., et al.
Publicado: (2009) -
Cosmic Ray Background Removal With Deep Neural Networks in SBND
por: Acciarri, R., et al.
Publicado: (2020) -
Reproducible Experiment Platform
por: Likhomanenko, Tatiana, et al.
Publicado: (2015)