Cargando…
Gravitational waves from first-order cosmological phase transitions: lifetime of the sound wave source
We survey systematically the general parametrisations of particle-physics models for a first-order phase transition in the early universe, including models with polynomial potentials both with and without barriers at zero temperature, and Coleman-Weinberg-like models with potentials that are classic...
Autores principales: | , , |
---|---|
Lenguaje: | eng |
Publicado: |
2020
|
Materias: | |
Acceso en línea: | https://dx.doi.org/10.1088/1475-7516/2020/07/050 http://cds.cern.ch/record/2713263 |
_version_ | 1780965327089172480 |
---|---|
author | Ellis, John Lewicki, Marek No, José Miguel |
author_facet | Ellis, John Lewicki, Marek No, José Miguel |
author_sort | Ellis, John |
collection | CERN |
description | We survey systematically the general parametrisations of particle-physics models for a first-order phase transition in the early universe, including models with polynomial potentials both with and without barriers at zero temperature, and Coleman-Weinberg-like models with potentials that are classically scale-invariant. We distinguish three possibilities for the transition—detonations, deflagrations and hybrids—and consider sound waves and turbulent mechanisms for generating gravitational waves during the transitions in these models, checking in each case the requirement for successful percolation. We argue that in models without a zero-temperature barrier and in scale-invariant models the period during which sound waves generate gravitational waves lasts only for a fraction of a Hubble time after a generic first-order cosmological phase transition, whereas it may last longer in some models with a zero-temperature barrier that feature severe supercooling. We illustrate the implications of these results for future gravitational-wave experiments. |
id | cern-2713263 |
institution | Organización Europea para la Investigación Nuclear |
language | eng |
publishDate | 2020 |
record_format | invenio |
spelling | cern-27132632023-10-04T06:01:31Zdoi:10.1088/1475-7516/2020/07/050http://cds.cern.ch/record/2713263engEllis, JohnLewicki, MarekNo, José MiguelGravitational waves from first-order cosmological phase transitions: lifetime of the sound wave sourcehep-phParticle Physics - PhenomenologyAstrophysics and AstronomyWe survey systematically the general parametrisations of particle-physics models for a first-order phase transition in the early universe, including models with polynomial potentials both with and without barriers at zero temperature, and Coleman-Weinberg-like models with potentials that are classically scale-invariant. We distinguish three possibilities for the transition—detonations, deflagrations and hybrids—and consider sound waves and turbulent mechanisms for generating gravitational waves during the transitions in these models, checking in each case the requirement for successful percolation. We argue that in models without a zero-temperature barrier and in scale-invariant models the period during which sound waves generate gravitational waves lasts only for a fraction of a Hubble time after a generic first-order cosmological phase transition, whereas it may last longer in some models with a zero-temperature barrier that feature severe supercooling. We illustrate the implications of these results for future gravitational-wave experiments.We survey systematically the general parametrisations of particle-physics models for a first-order phase transition in the early universe, including models with polynomial potentials both with and without barriers at zero temperature, and Coleman-Weinberg-like models with potentials that are classically scale-invariant. We distinguish three possibilities for the transition - detonations, deflagrations and hybrids - and consider sound waves and turbulent mechanisms for generating gravitational waves during the transitions in these models, checking in each case the requirement for successful percolation. We argue that in models without a zero-temperature barrier and in scale-invariant models the period during which sound waves generate gravitational waves lasts only for a fraction of a Hubble time after a generic first-order cosmological phase transition, whereas it may last longer in some models with a zero-temperature barrier that feature severe supercooling. We illustrate the implications of these results for future gravitational-wave experiments.arXiv:2003.07360KCL-PH-TH/2020-04CERN-TH-2020-016IFT-UAM/CSIC-20-35oai:cds.cern.ch:27132632020-03-16 |
spellingShingle | hep-ph Particle Physics - Phenomenology Astrophysics and Astronomy Ellis, John Lewicki, Marek No, José Miguel Gravitational waves from first-order cosmological phase transitions: lifetime of the sound wave source |
title | Gravitational waves from first-order cosmological phase transitions: lifetime of the sound wave source |
title_full | Gravitational waves from first-order cosmological phase transitions: lifetime of the sound wave source |
title_fullStr | Gravitational waves from first-order cosmological phase transitions: lifetime of the sound wave source |
title_full_unstemmed | Gravitational waves from first-order cosmological phase transitions: lifetime of the sound wave source |
title_short | Gravitational waves from first-order cosmological phase transitions: lifetime of the sound wave source |
title_sort | gravitational waves from first-order cosmological phase transitions: lifetime of the sound wave source |
topic | hep-ph Particle Physics - Phenomenology Astrophysics and Astronomy |
url | https://dx.doi.org/10.1088/1475-7516/2020/07/050 http://cds.cern.ch/record/2713263 |
work_keys_str_mv | AT ellisjohn gravitationalwavesfromfirstordercosmologicalphasetransitionslifetimeofthesoundwavesource AT lewickimarek gravitationalwavesfromfirstordercosmologicalphasetransitionslifetimeofthesoundwavesource AT nojosemiguel gravitationalwavesfromfirstordercosmologicalphasetransitionslifetimeofthesoundwavesource |