Cargando…
Blinded challenge for precision cosmology with large-scale structure: results from effective field theory for the redshift-space galaxy power spectrum
An accurate theoretical template for the galaxy power spectrum is key for the success of ongoing and future spectroscopic surveys. We examine to what extent the effective field theory (EFT) of large-scale structure is able to provide such a template and correctly estimate cosmological parameters. To...
Autores principales: | , , , , , , , |
---|---|
Lenguaje: | eng |
Publicado: |
2020
|
Materias: | |
Acceso en línea: | https://dx.doi.org/10.1103/PhysRevD.102.123541 http://cds.cern.ch/record/2713390 |
_version_ | 1780965329556471808 |
---|---|
author | Nishimichi, Takahiro D'Amico, Guido Ivanov, Mikhail M. Senatore, Leonardo Simonović, Marko Takada, Masahiro Zaldarriaga, Matias Zhang, Pierre |
author_facet | Nishimichi, Takahiro D'Amico, Guido Ivanov, Mikhail M. Senatore, Leonardo Simonović, Marko Takada, Masahiro Zaldarriaga, Matias Zhang, Pierre |
author_sort | Nishimichi, Takahiro |
collection | CERN |
description | An accurate theoretical template for the galaxy power spectrum is key for the success of ongoing and future spectroscopic surveys. We examine to what extent the effective field theory (EFT) of large-scale structure is able to provide such a template and correctly estimate cosmological parameters. To that end, we initiate a blinded challenge to infer cosmological parameters from the redshift-space power spectrum of high-resolution mock catalogs mimicking the BOSS galaxy sample but covering a 100 times larger cumulative volume. This gigantic simulation volume allows us to separate systematic bias due to theoretical modeling from the statistical error due to sample variance. The challenge is to measure three unknown input parameters used in the simulation: the Hubble constant, the matter density fraction, and the clustering amplitude. We present analyses done by two independent teams, who have fitted the mock simulation data generated by yet another independent group. This allows us to avoid any confirmation bias by analyzers and to pin down possible tuning of the specific EFT implementations. Both independent teams have recovered the true values of the input parameters within subpercent statistical errors corresponding to the total simulation volume. |
id | cern-2713390 |
institution | Organización Europea para la Investigación Nuclear |
language | eng |
publishDate | 2020 |
record_format | invenio |
spelling | cern-27133902023-10-04T07:57:36Zdoi:10.1103/PhysRevD.102.123541http://cds.cern.ch/record/2713390engNishimichi, TakahiroD'Amico, GuidoIvanov, Mikhail M.Senatore, LeonardoSimonović, MarkoTakada, MasahiroZaldarriaga, MatiasZhang, PierreBlinded challenge for precision cosmology with large-scale structure: results from effective field theory for the redshift-space galaxy power spectrumastro-ph.COAstrophysics and AstronomyAn accurate theoretical template for the galaxy power spectrum is key for the success of ongoing and future spectroscopic surveys. We examine to what extent the effective field theory (EFT) of large-scale structure is able to provide such a template and correctly estimate cosmological parameters. To that end, we initiate a blinded challenge to infer cosmological parameters from the redshift-space power spectrum of high-resolution mock catalogs mimicking the BOSS galaxy sample but covering a 100 times larger cumulative volume. This gigantic simulation volume allows us to separate systematic bias due to theoretical modeling from the statistical error due to sample variance. The challenge is to measure three unknown input parameters used in the simulation: the Hubble constant, the matter density fraction, and the clustering amplitude. We present analyses done by two independent teams, who have fitted the mock simulation data generated by yet another independent group. This allows us to avoid any confirmation bias by analyzers and to pin down possible tuning of the specific EFT implementations. Both independent teams have recovered the true values of the input parameters within subpercent statistical errors corresponding to the total simulation volume.An accurate theoretical template for the galaxy power spectrum is a key for the success of ongoing and future spectroscopic surveys. We examine to what extent the Effective Field Theory of Large Scale Structure is able to provide such a template and correctly estimate cosmological parameters. To that end, we initiate a blinded challenge to infer cosmological parameters from the redshift-space power spectrum of high-resolution mock catalogs mimicking the BOSS galaxy sample but covering a hundred times larger cumulative volume. This gigantic simulation volume allows us to separate systematic bias due to theoretical modeling from the statistical error due to sample variance. The challenge task was to measure three unknown input parameters used in the simulation: the Hubble constant, the matter density fraction, and the clustering amplitude. We present analyses done by two independent teams, who have fitted the mock simulation data generated by yet another independent group. This allows us to avoid any confirmation bias by analyzers and pin down possible tuning of the specific EFT implementations. Both independent teams have recovered the true values of the input parameters within sub-percent statistical errors corresponding to the total simulation volume.arXiv:2003.08277YITP-20-25INR-TH-2020-009CERN-TH-2020-040IPMU20-0025oai:cds.cern.ch:27133902020-03-18 |
spellingShingle | astro-ph.CO Astrophysics and Astronomy Nishimichi, Takahiro D'Amico, Guido Ivanov, Mikhail M. Senatore, Leonardo Simonović, Marko Takada, Masahiro Zaldarriaga, Matias Zhang, Pierre Blinded challenge for precision cosmology with large-scale structure: results from effective field theory for the redshift-space galaxy power spectrum |
title | Blinded challenge for precision cosmology with large-scale structure: results from effective field theory for the redshift-space galaxy power spectrum |
title_full | Blinded challenge for precision cosmology with large-scale structure: results from effective field theory for the redshift-space galaxy power spectrum |
title_fullStr | Blinded challenge for precision cosmology with large-scale structure: results from effective field theory for the redshift-space galaxy power spectrum |
title_full_unstemmed | Blinded challenge for precision cosmology with large-scale structure: results from effective field theory for the redshift-space galaxy power spectrum |
title_short | Blinded challenge for precision cosmology with large-scale structure: results from effective field theory for the redshift-space galaxy power spectrum |
title_sort | blinded challenge for precision cosmology with large-scale structure: results from effective field theory for the redshift-space galaxy power spectrum |
topic | astro-ph.CO Astrophysics and Astronomy |
url | https://dx.doi.org/10.1103/PhysRevD.102.123541 http://cds.cern.ch/record/2713390 |
work_keys_str_mv | AT nishimichitakahiro blindedchallengeforprecisioncosmologywithlargescalestructureresultsfromeffectivefieldtheoryfortheredshiftspacegalaxypowerspectrum AT damicoguido blindedchallengeforprecisioncosmologywithlargescalestructureresultsfromeffectivefieldtheoryfortheredshiftspacegalaxypowerspectrum AT ivanovmikhailm blindedchallengeforprecisioncosmologywithlargescalestructureresultsfromeffectivefieldtheoryfortheredshiftspacegalaxypowerspectrum AT senatoreleonardo blindedchallengeforprecisioncosmologywithlargescalestructureresultsfromeffectivefieldtheoryfortheredshiftspacegalaxypowerspectrum AT simonovicmarko blindedchallengeforprecisioncosmologywithlargescalestructureresultsfromeffectivefieldtheoryfortheredshiftspacegalaxypowerspectrum AT takadamasahiro blindedchallengeforprecisioncosmologywithlargescalestructureresultsfromeffectivefieldtheoryfortheredshiftspacegalaxypowerspectrum AT zaldarriagamatias blindedchallengeforprecisioncosmologywithlargescalestructureresultsfromeffectivefieldtheoryfortheredshiftspacegalaxypowerspectrum AT zhangpierre blindedchallengeforprecisioncosmologywithlargescalestructureresultsfromeffectivefieldtheoryfortheredshiftspacegalaxypowerspectrum |