Cargando…
Homogenization: methods and applications
Homogenization is a collection of powerful techniques in partial differential equations that are used to study differential operators with rapidly oscillating coefficients, boundary value problems with rapidly varying boundary conditions, equations in perforated domains, equations with random coeffi...
Autores principales: | Chechkin, G A, Piatnitski, A L, Shamaev, A S |
---|---|
Lenguaje: | eng |
Publicado: |
American Mathematical Society
2007
|
Materias: | |
Acceso en línea: | http://cds.cern.ch/record/2713783 |
Ejemplares similares
-
Mathematical Problems in Elasticity and Homogenization
por: Oleinik, OA, et al.
Publicado: (1977) -
Multiscale methods: averaging and homogenization
por: Pavliotis, Grigorios A, et al.
Publicado: (2008) -
Shape optimization by the homogenization method
por: Allaire, Grégoire
Publicado: (2002) -
Non-homogeneous boundary value problems and applications
por: Lions, J L, et al.
Publicado: (1972) -
Non-homogeneous boundary value problems and applications
por: Lions, J L, et al.
Publicado: (1972)