Cargando…

Asymptotic representation theory of the symmetric group and its applications in analysis

Asymptotic representation theory of symmetric groups deals with two types of problems: asymptotic properties of representations of symmetric groups of large order and representations of the limiting object, i.e., the infinite symmetric group. The author contributed significantly in the development o...

Descripción completa

Detalles Bibliográficos
Autor principal: Kerov, S V
Lenguaje:eng
Publicado: American Mathematical Society 2003
Materias:
Acceso en línea:http://cds.cern.ch/record/2713800
Descripción
Sumario:Asymptotic representation theory of symmetric groups deals with two types of problems: asymptotic properties of representations of symmetric groups of large order and representations of the limiting object, i.e., the infinite symmetric group. The author contributed significantly in the development of problems of both types, and his book presents an account of these contributions, as well as those of other researchers. Among the problems of the first type, the author discusses the properties of the distribution of the normalized cycle length in a random permutation, and the limiting shape of a random (with respect to the Plancherel measure) Young diagram. He also studies stochastic properties of the deviations of random diagrams from the limiting curve. Among the problems of the second type, the author studies an important problem of computing irreducible characters of the infinite symmetric group. This leads him to the study of a continuous analog of the notion of Young diagram, and, in particular, to a continuous analogue of the hook walk algorithm, which is well known in the combinatorics of finite Young diagrams. In turn, this construction provides a completely new description of the relation between the classical moment problems of Hausdorff and Markov.