Cargando…
Painlevé equations through symmetry
The six Painleve equations (nonlinear ordinary differential equations of the second order with nonmovable singularities) have attracted the attention of mathematicians for more than a hundred years. These equations and their solutions (Painlev� transcendents) nowadays play an important role in many...
Autor principal: | Noumi, Masatoshi |
---|---|
Lenguaje: | eng |
Publicado: |
American Mathematical Society
2004
|
Materias: | |
Acceso en línea: | http://cds.cern.ch/record/2713811 |
Ejemplares similares
-
Discrete Painlevé equations
por: Joshi, Nalini
Publicado: (2019) -
Bonnet surfaces and Painlevé equations
por: Bobenko, Alexander I, et al.
Publicado: (1994) -
Painlevé differential equations in the complex plane
por: Gromak, Valerii I, et al.
Publicado: (2002) -
Painlevé equations in differential geometry of surfaces
por: Bobenko, Alexander I, et al.
Publicado: (2000) -
Nonlinear evolution equations and Painlevé test
por: Steeb, Willi-Hans, et al.
Publicado: (1988)