Cargando…

A Faster, More Intuitive RooFit

RooFit and RooStats, the toolkits for statistical modelling in ROOT, are used in most searches and measurements at the Large Hadron Collider as well as at B factories. Larger datasets to be collected at e.g. the HighLuminosity LHC will enable measurements with higher precision, but will require fast...

Descripción completa

Detalles Bibliográficos
Autor principal: Hageböck, Stephan
Lenguaje:eng
Publicado: 2020
Materias:
Acceso en línea:https://dx.doi.org/10.1051/epjconf/202024506007
http://cds.cern.ch/record/2715329
_version_ 1780965427092914176
author Hageböck, Stephan
author_facet Hageböck, Stephan
author_sort Hageböck, Stephan
collection CERN
description RooFit and RooStats, the toolkits for statistical modelling in ROOT, are used in most searches and measurements at the Large Hadron Collider as well as at B factories. Larger datasets to be collected at e.g. the HighLuminosity LHC will enable measurements with higher precision, but will require faster data processing to keep fitting times stable. In this work, a simplification of RooFit’s interfaces and a redesign of its internal dataflow is presented. Interfaces are being extended to look and feel more STL-like to be more accessible both from C++ and Python to improve interoperability and ease of use, while maintaining compatibility with old code. The redesign of the dataflow improves cache locality and data loading, and can be used to process batches of data with vectorised SIMD computations. This reduces the time for computing unbinned likelihoods by a factor four to 16. This will allow to fit larger datasets of the future in the same time or faster than today’s fits.
id cern-2715329
institution Organización Europea para la Investigación Nuclear
language eng
publishDate 2020
record_format invenio
spelling cern-27153292021-05-03T08:10:33Zdoi:10.1051/epjconf/202024506007http://cds.cern.ch/record/2715329engHageböck, StephanA Faster, More Intuitive RooFitphysics.data-anOther Fields of Physicshep-exParticle Physics - Experimentcs.MSComputing and ComputersRooFit and RooStats, the toolkits for statistical modelling in ROOT, are used in most searches and measurements at the Large Hadron Collider as well as at B factories. Larger datasets to be collected at e.g. the HighLuminosity LHC will enable measurements with higher precision, but will require faster data processing to keep fitting times stable. In this work, a simplification of RooFit’s interfaces and a redesign of its internal dataflow is presented. Interfaces are being extended to look and feel more STL-like to be more accessible both from C++ and Python to improve interoperability and ease of use, while maintaining compatibility with old code. The redesign of the dataflow improves cache locality and data loading, and can be used to process batches of data with vectorised SIMD computations. This reduces the time for computing unbinned likelihoods by a factor four to 16. This will allow to fit larger datasets of the future in the same time or faster than today’s fits.RooFit and RooStats, the toolkits for statistical modelling in ROOT, are used in most searches and measurements at the Large Hadron Collider as well as at $B$ factories. Larger datasets to be collected at e.g. the High-Luminosity LHC will enable measurements with higher precision, but will require faster data processing to keep fitting times stable. In this work, a simplification of RooFit's interfaces and a redesign of its internal dataflow is presented. Interfaces are being extended to look and feel more STL-like to be more accessible both from C++ and Python to improve interoperability and ease of use, while maintaining compatibility with old code. The redesign of the dataflow improves cache locality and data loading, and can be used to process batches of data with vectorised SIMD computations. This reduces the time for computing unbinned likelihoods by a factor four to 16. This will allow to fit larger datasets of the future in the same time or faster than today's fits.arXiv:2003.12875oai:cds.cern.ch:27153292020
spellingShingle physics.data-an
Other Fields of Physics
hep-ex
Particle Physics - Experiment
cs.MS
Computing and Computers
Hageböck, Stephan
A Faster, More Intuitive RooFit
title A Faster, More Intuitive RooFit
title_full A Faster, More Intuitive RooFit
title_fullStr A Faster, More Intuitive RooFit
title_full_unstemmed A Faster, More Intuitive RooFit
title_short A Faster, More Intuitive RooFit
title_sort faster, more intuitive roofit
topic physics.data-an
Other Fields of Physics
hep-ex
Particle Physics - Experiment
cs.MS
Computing and Computers
url https://dx.doi.org/10.1051/epjconf/202024506007
http://cds.cern.ch/record/2715329
work_keys_str_mv AT hagebockstephan afastermoreintuitiveroofit
AT hagebockstephan fastermoreintuitiveroofit