Cargando…
Optimising HEP parameter fits via Monte Carlo weight derivative regression
HEP event selection is traditionally considered a binary classification problem, involving the dichotomous categories of signal and background. In distribution fits for particle masses or couplings, however, signal events are not all equivalent, as the signal differential cross section has different...
Autor principal: | Valassi, Andrea |
---|---|
Lenguaje: | eng |
Publicado: |
2020
|
Materias: | |
Acceso en línea: | https://dx.doi.org/10.1051/epjconf/202024506038 http://cds.cern.ch/record/2715330 |
Ejemplares similares
-
Towards Optimal Compression: Joint Pruning and Quantization
por: Zandonati, Ben, et al.
Publicado: (2023) -
Technical Report of Participation in Higgs Boson Machine Learning Challenge
por: Ahmad, S. Raza
Publicado: (2015) -
Variational Dropout Sparsification for Particle Identification speed-up
por: Ryzhikov, Artem, et al.
Publicado: (2020) -
Hyperparameter optimization, quantum-assisted model performance prediction, and benchmarking of AI-based High Energy Physics workloads using HPC
por: Wulff, Eric, et al.
Publicado: (2023) -
Generative Models for Fast Calorimeter Simulation: the LHCb case
por: Chekalina, Viktoria, et al.
Publicado: (2019)