Cargando…
Machine Learning String Standard Models
We study machine learning of phenomenologically relevant properties of string compactifications, which arise in the context of heterotic line bundle models. Both supervised and unsupervised learning are considered. We find that, for a fixed compactification manifold, relatively small neural networks...
Autores principales: | Deen, Rehan, He, Yang-Hui, Lee, Seung-Joo, Lukas, Andre |
---|---|
Lenguaje: | eng |
Publicado: |
2020
|
Materias: | |
Acceso en línea: | https://dx.doi.org/10.1103/PhysRevD.105.046001 http://cds.cern.ch/record/2715331 |
Ejemplares similares
-
Machine Learning of Calabi-Yau Volumes
por: Krefl, Daniel, et al.
Publicado: (2017) -
Machine Learning and Algebraic Approaches towards Complete Matter Spectra in 4d F-theory
por: Bies, Martin, et al.
Publicado: (2020) -
Distinguishing Elliptic Fibrations with AI
por: He, Yang-Hui, et al.
Publicado: (2019) -
Physics of Infinite Complex Structure Limits in eight Dimensions
por: Lee, Seung-Joo, et al.
Publicado: (2021) -
Holomorphic Anomalies, Fourfolds and Fluxes
por: Lee, Seung-Joo, et al.
Publicado: (2020)